Integration of foreign estimates of SNP effects into a domestic SNPBLUP

J. Vandenplas, M.P.L. Calus, G. Gorjanc

Introduction

Genomic evaluation

• Aim: more accurate genomic EBVs

- SNP-based evaluations under study/testing
- →Future: exchange of estimates of SNP effects?
- → How to integrate them into SNPBLUP?

Developing and testing procedures to integrate

estimates of SNP effects and measures of precision

from a foreign SNPBLUP

into a domestic SNPBLUP

Methods – joint SNPBLUP

Methods – joint SNPBLUP

$$\begin{bmatrix} \mathbf{y}_{d} \\ \mathbf{y}_{f} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{d} & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{f} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_{d} \\ \boldsymbol{\beta}_{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{d} & \mathbf{W}_{d} \\ \mathbf{Z}_{f} & \mathbf{W}_{f} \end{bmatrix} \boldsymbol{\alpha} + \begin{bmatrix} \mathbf{e}_{d} \\ \mathbf{e}_{f} \end{bmatrix}$$
$$\boldsymbol{\alpha} \sim MVN \left(\mathbf{0}, \mathbf{I}\sigma_{\alpha_{J}}^{2} \right) \qquad \begin{bmatrix} \mathbf{e}_{d} \\ \mathbf{e}_{f} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{R}_{d} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_{f} \end{bmatrix} \sigma_{e}^{2} \right)$$

- **y**_i = vector of phenotypes
- β_i = vector of fixed effects
- α_i = vector of SNP effects
- **e**_i = vector of residuals
- **W**_i = matrix of SNP genotypes
- \mathbf{X}_i , \mathbf{Z}_i = incidence matrices

Methods – joint SNPBLUP

Methods – separate SNPBLUP

Methods – SNPBLUP with integration

Methods – SNPBLUP with integration

Assumptions

- Same model/variances ($\sigma_e^2 \& \sigma_{\alpha_I}^2$) as joint SNPBLUP
- Same genotype (scaling) across all SNPBLUP

Methods – SNPBLUP with integration

→ Several ways to approximate $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha}_{f})\right)^{-1}$

1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha}_{f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$
- 3) $\left(PEC(\widehat{\alpha_f})\right)^{-1} \approx \left(PEV(\widehat{\alpha_f})\right)^{-1}$

Methods – approximations of $\left(PEC(\widehat{\alpha_f})\right)^{-1}$

- 1) No approximation (reference): $\left(PEC(\widehat{\alpha_f})\right)^{-1}$
- 2) $\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(PEC(\widehat{\boldsymbol{\alpha}_f})_{within_chromosome}\right)^{-1}$
- 3) $\left(PEC(\widehat{\alpha_f})\right)^{-1} \approx \left(PEV(\widehat{\alpha_f})\right)^{-1}$

4)
$$\left(PEC(\widehat{\boldsymbol{\alpha}_f})\right)^{-1} \approx \left(\boldsymbol{\Lambda}_f\left(f(\mathbf{L}\mathbf{D}_f,\mathbf{p})\right)\boldsymbol{\Lambda}_f\sigma_e^{-2} + \mathbf{I}\sigma_{\alpha_f}^{-2}\right)$$

Simulation

2 Holstein-like populations

• 1 trait (h² = 0.30 - 60K SNPs)

Training populations

- 5,000 animals / population
- Randomly sampled from gen. 1 to 6
- Domestic: own performance records
- Foreign: pseudo-records (~DYD, DRP) + weights
- Selection candidates
 - 10,000 animals from gen. 7 / population

Results – correlations

- Accurate integration
 - Even with only PEV and LD information

Results – bias

Almost no bias, except for PEV

Conclusions

Accurate integration of estimates of SNP effects

- Without exchanging genotypes/phenotypes
- Procedure similar to integration of foreign EBVs
 Similar assumptions/issues/solutions
- Easy extensions
 - Multiple populations, multiple traits, ...
 - Special case: SNP-MACE

STATES OF STATES

Thank you!

