

PARENTAGE VERIFICATION USING IMPUTED MICROSATELLITE AND SNP DATA IN SLOVENIAN BROWN SWISS POPULATION

Jana OBŠTETER, Betka LOGAR, Andreja OPARA and Janez JENKO

Interbull meeting 2016, Puerto Varas, Chile, 24 October 2016

Outline - Slovenian case

- parentage verification
- recording scheme
- genomic selection

- imputation of MS from SNP in BSW
- parentage testing with imputed MS
- parentage testing with SNP markers

Parentage verification in Slovenia

- base zootecnical data (documentation) and exterier of animals
 - all new born animals in recording scheme
- supplementary using 12 ISAG microsatellite markers (MS)
 - all 'candidate' male calves
 - animals in progeny test stations (beef)
 - breeding material (i.e. semen, embryos and ovary cells)
 - random supervision of base parentage recording
 - No $\mathcal{Q} \cong 1\%$ of newborn calves in recorded herds

Dairy recording scheme in Slovenia

82,000 cows in recording scheme

11% Brown Swiss36% Holstein39% Simmental

Genomic selection in Slovenia

- in Brown Swiss (BSW) started with participation in project inter enomics
- SNP data for some BSW breeding animals
 - breeding bulls
 - candidate male calves
 - some other breeding animals
 - app. 200 animals/year

82,000 cows in recording sheme

11% Brown Swiss

36% Holstein 39% Simmental

MS/SNP data

- discordance between genotypic data for different animals (MS/SNP)
- not suitable for parentage verification

MS/SNP data

- avoid re-genotyping SNP-genotyped animals for MS-genotypes
- imputation of MS from SNP data implemented

Imputation of MS from SNP

- animals SNP-genotyped on different chips
 - not all containing minimum set of 880 SNPs required
- SNP-genotypes first imputed onto the chip with max no. required SNPs (*FIMPUTE*)
- subsequently MS imputed (*BEAGLE 3.3.2*)

CHIP	#SNPs
GGPv02	607
GGPv03	682
GGPv04	878
HD	751
HDv02	840
III 50Kv01	57
III50Kv02	56

Imputation of MS from SNP results

- 91.7% overall MS imputation accuracy
- 4 MS accuracy < 90%(ETH10, ETH3, TGL53, BM1818)

Parentage testing with imputed MS

- offspring's (OFF) parentage already confirmed based on genotyped MS
- 65 cases
- − 15.4% (10) 0 mismatches \rightarrow confirmed
- 44.6% (29) 1 mismatch
 - \rightarrow confirmed
- 40.0% (26) ≥ 2 mismatches
 - \rightarrow rejected

Parentage testing using SNP markers

- verification as proposed by McClure (2015)
- 800 SNPs used
- verification of one parent only
 - 1% genotype
 mismatches allowed

Parentage testing using SNP markers

- 43 cases of one parent testing
 - -90,7% (39) 0 genotype mismatches \rightarrow confirmed
 - -9.3% (4) 1 genotype mismatch \rightarrow confirmed
 - verification of all tested parentages
- replacing the parent with a half-sibling or grand-parent
 - >25 genotype mismatches
 - \rightarrow rejected

Conclusion

 MS imputation needs additional optimization to reach required accuracies

 possibly by using a haplotype reference consisting of animals
 that are genetically more similar
 to the studied BSW population

 verification using SNPs has proven as a reliable tool for routine use

Thank you for your attention!

