

Genotype by environment interaction (G×E) for female fertility under conventional and organic production systems in Danish Holsteins

Aoxing Liu, Morten Kargo, Johanna Höglund, Zhe Zhang,

Jørn Rind Thomasen, Line Hjortø, Iben Alber Christiansen, Yachun Wang, Guosheng Su

Feb 10, 2018

Contents

- Introduction
- Material and methods
- Results and discussion
- Conclusion

Introduction

Introduction

- ✓ 13% milking cows are from organic herds (Lauridsen, U., 2018)
- ✓ Bulls used for organic are selected from data of all herds

Objectives

For female fertility traits in Danish Holsteins:

 Estimate variance components and heritabilities for conventional and organic production systems separately

✓ Investigate G×E under these two production systems

Material and methods

Workflow

✓ Environmental descriptor

✓ Grass ratio -> Energy balance -> fertility

Data-Traits

✓ Same traits as Nordic routine evaluation

✓ Heifers (h) and cows (c) as different traits

Heifer & Cow

Conceive and keep pregnancy

- AIS Number of inseminations
- IFL Interval from first to last insemination
- NRR Non-return rate at 56 days after first insemination

Cow

Recycle after calving

ICF Interval from calving to 1st insemination

Data- Grass ratio of feed

✓ Differences of grass ratio between seasons varied across herds

- Herds with both seasons
- Average over Summer and Winter

Data-Typical conventional/organic

Distribution of grass ratio of feed

Grass ratio of 1306 conventional herds

- Herds: 204 herds grass ratio < 0.2</p>
- Records: ~85,000 (heifer)
 ~120,000 (cow)

Grass ratio of 130 organic herds

- Herds: 130 herds grass ratio > 0.38
- Records: ~35,000 (heifer)50,000 (cow)

Model-Heifer traits

✓ Two-trait animal model

Model-Cow traits

✓ Two-trait animal model

Repeatability model
(lactation 1-3)
$$\begin{bmatrix}
e_1 \\
e_2
\end{bmatrix} \sim N\left(0, I \otimes \begin{bmatrix}
\sigma_{e_1}^2 & 0 \\
& \sigma_{e_2}^2
\end{bmatrix}\right)$$

$$\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
X_1 & 0 \\
0 & X_2
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix} + \begin{bmatrix}
Z_{a1} & 0 \\
0 & Z_{a2}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix} + \begin{bmatrix}
Z_{pe1} & 0 \\
0 & Z_{pe2}
\end{bmatrix}
\begin{bmatrix}
pe_1 \\
pe_2
\end{bmatrix} + \begin{bmatrix}
e_1 \\
e_2
\end{bmatrix}$$

$$\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix} \sim N\left(0, A \otimes \begin{bmatrix}
\sigma_{a_1}^2 & \sigma_{a_1a_2} \\
& \sigma_{a_2}^2
\end{bmatrix}\right)$$

$$\begin{bmatrix}
pe_1 \\
pe_2
\end{bmatrix} \sim N\left(0, I \otimes \begin{bmatrix}
\sigma_{pe_1}^2 & 0 \\
& \sigma_{pe_2}^2
\end{bmatrix}\right)$$

Results and discussion

Results-Mean of phenotypes

e.g. NRRh: organic is ~5 percentage point higher than conventional

✓ Organic better than Conventional

Results-Heritabilities

- Heritabilities were low in both organic and conventional
- Heterogeneity in heritabilities between organic and conventional, indicating genetic evaluation based on data of all herds requires a model able to handle the heterogeneity

Genetic correlation under conventional and organic

- ✓ Significant G×E were observed for NRRh, AISh and for ICF
- ✓ G×E for three traits and increasing organic population suggested it may have a potential to develop a breeding program optimal for both production systems

Conclusion

Fertility functions: organic better than conventional

- > Heterogeneity in heritabilities
- Significant G×E were observed for AISh, NRRh and for ICF

The existence of G×E for three traits and the increasing organic population suggested that it maybe have a potential to develop a breeding program optimal for both production systems

Acknowledgement

- Per Madsen, Aarhus University
- Lu Cao, Aarhus University
- Xiaowei Mao, Cornell University
- Han Mulder, Wageningen University & Research

 \checkmark Organic dairy breeding lines? -Possibilities and requirements

Morten Kargo, Aarhus University Time: Feb 13 (TUE), 14:30-14:45

 Breeding goals for organic dairy farming in Denmark based on the principles of organic agriculture
 Presenter: Margot Slagboom, Aarhus University

Time: Feb 15 (THU), 10:00-10:15

Background

✓ Definition of G x E

 $P = G + E + G \times E$

Different G response differently to different E

Data_Grass ratio in feed

