

Choices in genomic evaluation for small populations

S. Andonov, D.A.L. Lourenco, B.O. Fragomeni, Y. Masuda, I. Pocrnic, S. Tsuruta, and I. Misztal USCM, Macedonia; UGA, USA

Background

Small Holstein populations

Croatia40k

– Macedonia 35K

Slovenia35K

- International trade of genetic material
 - Semen & embryos
 - Pregnant heifers
- Incomplete relationship (lack of deep pedigree)
- National genomic breeding programs small reference population
- Selection of young animals?
- Progeny testing?

Background

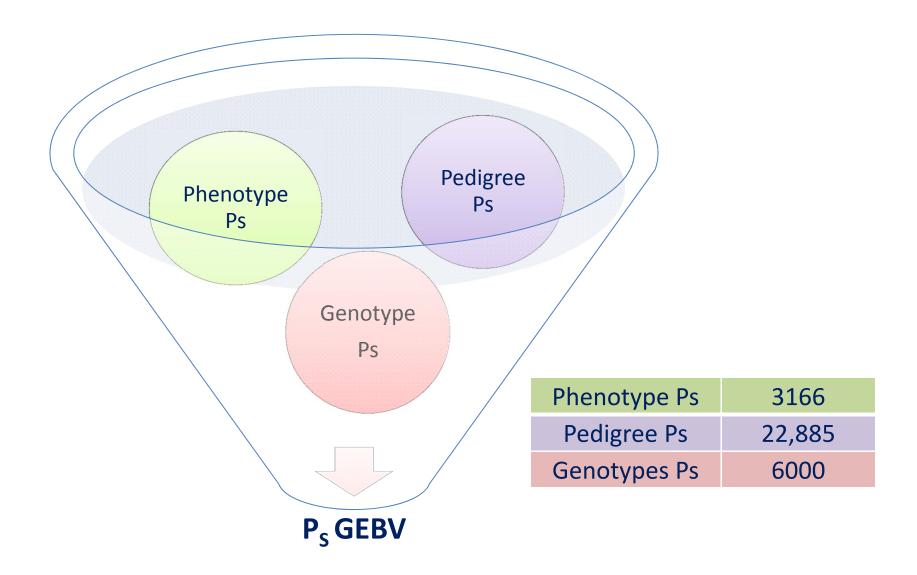
- Choices for small populations are:
 - If data is available include proven bulls/dam into evaluation
 - Pedigree;
 - Phenotypes;
 - Genomic.
 - Become part of other breeding program
 - Participate into consortia.

Background

- Simulation study
- Test different sources of information from connected small (P_S) and large population (P_L)
- 4 cases

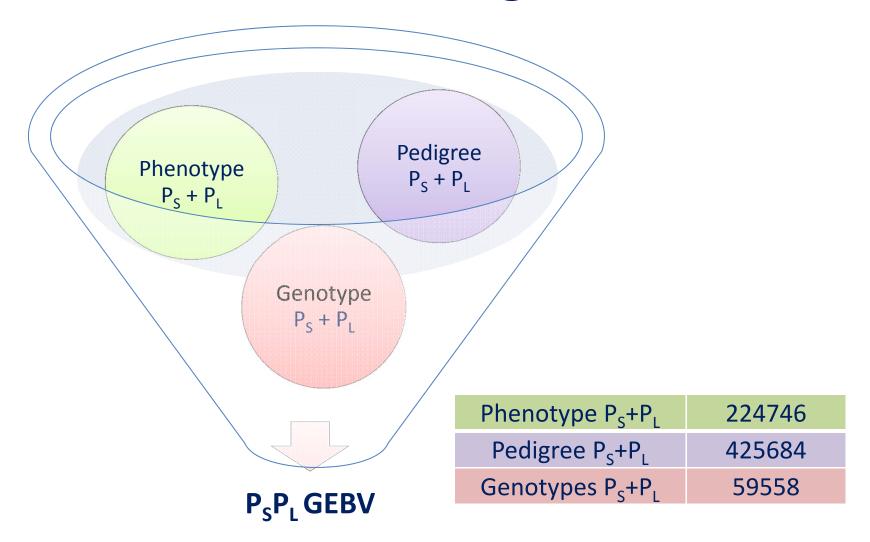
Material

- Large population
 - 2K ♂ and 20K ♀ 20 generations
 - $h^2 = 0.3$
 - Replacement sire=0.9;dam=0.3
 - Selection criterion high EBV,
 - Genotypes for generations 14-20th

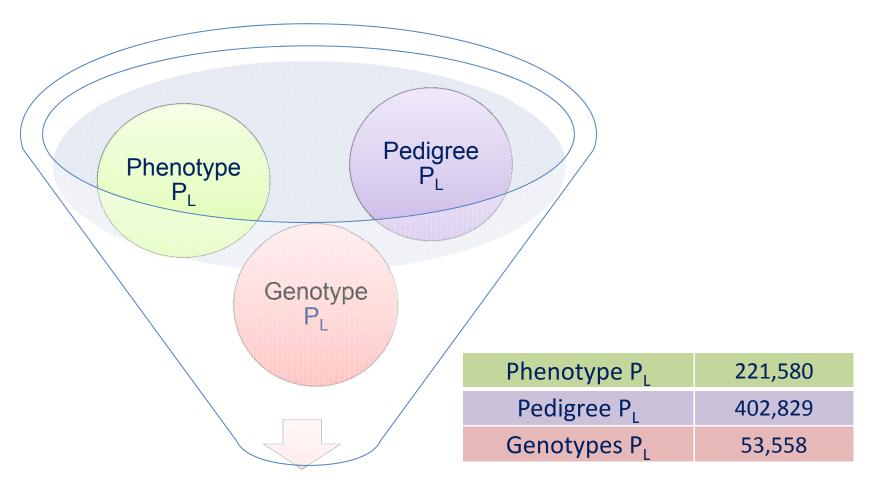

Small population

- 150 \bigcirc x 2000 \bigcirc (P_L 18 g)
- -2^{nd} gen + 100 \circlearrowleft (P₁ 19 g)
- $h^2 = 0.3$
- Replacement sire=0.5;dam=0.3
- Selection criterion phenotype,
- Genotypes for 1-3 generations (6000 animals total)

Material


- Genomic
 - 45000 biallelic SNP
 - 29 chromosomes
 - 450 QTLs
- Average of 5 replicates

Small



Small + GEBV_Large GEBV P_L Pedigree Phenotype Ps Ps Genotype Ps Phenotype Ps 3166 Pedigree Ps 22,885 **Genotypes Ps** 6000 P_S+ GEBV GEBV P_L sires 4475

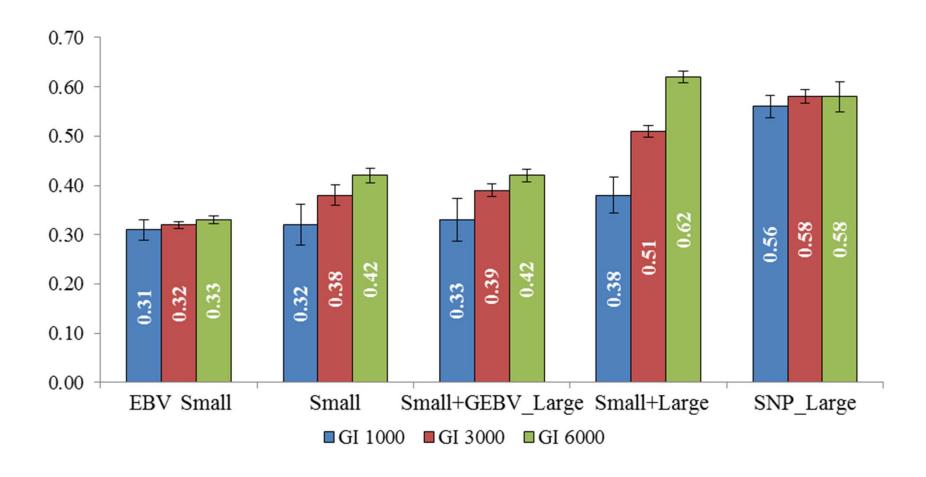
Small + Large

SNP_Large

SNP effect * $SNP(P_S) = P_{L-SNP} GEBV$

Methods

- BLUPF90 family (Misztal et al., 2015)
- Genetic connection between PL and PS (r_g) REML
- Small and Small+Large, Genomic EBV ssGBLUP
- Small+GEBV_Large ssGBLUP with external information
- SNP_Large ssGBLUP extended to calculate SNP effects
- Model:


$$y = 1\mu + Za + e$$

- **Z** incidence matrix for the random effect in **a**.
- $a \sim N(0, H\sigma_a^2)$; $\sigma_a^2 H$ matrix that combines pedigree and genomic relationships

Validation

- Correlation GEBV-TGEBV
- Validate
 - -1000 genotypes of P_s (334 in 3rd generation)
 - 3000 genotypes of P_S (1000 in 3rd generation)
 - 6000 genotypes of P_S (2000 in 3rd generation)
- $r_g = 0.84 \pm 0.019 (P_L P_S)$

Results

Achievements

- Small population stand alone
 - Moderate accuracies
 - Need to increase daughter groups per sire in P_s
- Small population + external GEBV of sires
 - slightly improve the accuracy
 - add complexity to the evaluation

Achievements

- Join evaluation of P_S and P_L
 The highest accuracies
- SNP effects for P_L to assess GEBV
 - Considerably high accuracies
 - Constant over replicates
 - No need pedigree and performance of P_S
 - Constrain prediction of GEBV for animals with SNPs all candidates need to be genotyped

Practical implementation

- Small population
 - share genomic in consortia
 - young animals DGV
 - continue breeding program with GI (verify realization of GEBV)
 - Check genetic gain
- Large population
 - identifying animals with high GEBV and low inbreeding

Thank you!