

Genomic reliabilities Testing the protocol proposed by Interbull

H. Eding, J. Vandenplas, G. de Jong

Dubrovnik, August 26, 2018

OVERVIEW

- Introduction
- Six step procedure
- Test data and parameters used
- Some results
- Discussion

INTRODUCTION

- Interbull started a working group Genomic Reliabilities \bullet
- Aim: Find a procedure to estimate animal genomics reliabilities \bullet
 - For multi- and single-step procedures _____
 - For genotyped and non-genotyped animals _____
 - Accounts for residual polygenic effects _____
 - Consistent results across countries (unified approach) ____
 - Feasible for large numbers if genotyped animals ____
 - Usuable in routine genomic evaluations ____

INTRODUCTION

- AEU started development of a (D)PCG to solve singe step models \bullet
 - Single step GBLUP
 - Single step SNP BLUP
 - Aimed for use in the national (genomic) evaluation ____
 - Replaces our current pseudo-trait methods •
- In parallel new software to estimate GEBV reliabilities is needed \bullet
 - Incorporates traditional sources of information (parents, offspring, own)
 - Incorporates information from genotypes ____
 - Accounts for propagation (effect of genomic information on offspring, parents) ____
 - Proposal Interbull working group chosen as approach.

INTRODUCTION

Project: Develop software/workflow \bullet

- Implementing the Interbull protocol
- Within frame work of new (D)PCG to solve single step SNP BLUP models _____
- Produce correct GEBV reliabilities for genotyped and non-genotyped animals _____

First test on existing flow: Milking speed and Temperament lacksquare

- To get a feel for the requirements _____
- Compare results with current GEBV reliability estimates ____

SIX STEPS

- 1. Calculate SNP reliabilities
- 2. Derive DGV reliabilities
- 3. Adjust DGV reliabilities
- 4. Calculate genomic gain of reliabilities
- 5. Propagation (optional; non-gentyped animals)
- 6. Calculate final reliabilities

s d animals)

GETTING PARAMETERS

- Rate of imputation lacksquare
 - 'accuracy of genotype imputation'
- All bulls on same chip, so $r_{imp} = 0.985$ (empirical mean) Theoretical to realized reliability factor *f* •
 - Set to 1.d0 for first testing ____
 - Unclear how to derive correct value
- Proportion of residual polygenic variance k \bullet
 - Expected values ~ [0.05 ; 0.25] _____

GETTING PARAMETERS: K

Testing on cow reference \bullet

$$\sigma_{SNP_{tot}}^2 = \left(\left(\frac{N - \sum_j pp_j}{100} \right) \right)$$

$$k = \sigma_{poly}^2 / (\sigma_{SNP_{tot}}^2 + \sigma_{SNP_{tot}}^2)$$

Variance components from current genomic selection flows \bullet

 $+\sum_{i} pp_{j} \sigma_{SNP}^{2}$

 (τ_{poly}^2)

FIRST TEST: TEMPERAMENT AND MILKING SPEED

- Animal ID's
 - Pedigree : 6,300,989 animals
 - Observations : 4,021,612
- Genotypes
 - Most recent run (2018 05 01)
 - Number of genotypes : 115,378
 - Number of SNP : 37,995
 - Converted to [012]-format

TEST DATA USED: TEMPERAMENT AND MILKING SPEED

- During genomic selection validation
 - Added EDC (Δ_{EDC}) are calculated from DGV and BLUP results
 - Based on differences in reliability EBV and GEBV for young bulls (no daughters)
 - Assumed constant (single genotype in single animal)
- Overview traits:

Trait	h²	k	EDC _{add} (val 2018)	Mean rel. (GEBV YB)
Milking Speed	0.230	0.084	24.1	0.71
Temperament	0.114	0.208	5.1	0.38

V and BLUP results d GEBV for young bulls (no daughter ngle animal)

RESULTS: RUNTIME

Step	Action	Time	
1	Conventional rels	3m10	
2	Read genotypes	1m20	
3	Convert to [012]	3m32	
4	Run luke software	53m20	per trait
5	Apply Liu protocol	2m00	

: 37,995

- Peak memory usage: 52.4 Gb
 - Number of genotypes : 115,378
 - Number of SNP

RESULTS: BULLS GEBV VS EBV MILKING SPEED

RESULTS: BULLS GEBV VS EBV MILKING SPEED

RESULTS: BULLS GEBV VS EBV TEMPERAMENT

RESULTS: BULLS GEBV VS EBV TEMPERAMENT

TEST DATA USED: TEMPERAMENT AND MILKING SPEED

• Overview traits:

Trait	EDC _{add} (val 2018)	
Milking speed	24.1	
Temperament	5.1	

Mean rel. (GEBV YB aug '18)	
0.71	
0.38	

TEST DATA USED: TEMPERAMENT AND MILKING SPEED

Overview traits:

Trait	EDC _{add} (val 2018)	EDC _{add} (ITB YB)	Mean rel. (GEBV YB aug '18)	Mean rel. (ITB YB)
Milking speed	24.1	71.0	0.71	0.81
Temperament	5.1	70.9	0.38	0.72

Conclusion: Correction/scaling seems unavoidable \bullet

DISCUSSION

DISCUSSION: RUNTIME

- Getting SNP reliabilities was most costly in terms of run time lacksquare
 - ~ 55 minutes per trait
- Most evaluations are multiple trait lacksquare
 - Example: Fertility evaluation has 40 traits ~ 35h (at 120,000 genotypes of 37,995 SNP) Conventional rels fertility ~ 20h

 - Solution: run traits in parallel
- Applying protocol to obtain GEBV rels requires little time lacksquareIncludes propagation in 6.2 mln non-genotype animals ____
- Results suggest the protocol is fit for use in routine evaluation.

DISCUSSION: RESULTS

- Propagation results in increased Grel vs conventional reliability \bullet
 - VanRaden&Wiggans algorithm gives satisfactory results ____
- Grel seems to overestimate reliability of GEBV \bullet
 - Possible cause 1: No deregression (yet) of conventional EDC ____
 - Possible cause 2: No scaling with 'realized' reliability ____
- Deregression not expected to reduce overestimation much
- Conclusion: Scaling of REL_{SNP} or EDC_{SNP} is necessary
 - Most important factor in estimation procedure _____
 - Possibly use 'added EDC' statistic from genomic validation

DISCUSSION: SCALING

- Genomic validation produces two main statistics: \bullet
 - R^2_{DGV}

: Mean genomic reliability of validation bulls (no daughters)

 R^2_{BLUP}

- : Mean conventional reliability of validation bulls
- Additional statistic produced: mean added EDC lacksquare
 - $\Delta_{\rm EDC} = \rm EDC(R^2_{\rm DGV}) \rm EDC(R^2_{\rm BLUP})$ —
 - Estimate of EDC's added to information by single genotype of bull without genotyped relatives ____
- Alternative scaling (will be tested): lacksquare
 - $REL_{SNP} => EDC_{SNP}$
 - Get EDC_{SNP} for bulls in validation ____
 - $f = \Delta_{EDC} / mean(EDC_{SNP. val})$
 - $EDC_{dgv,i} = EDC_{snp,i} \times f \times (1 r_{imp})$
 - Residual additive genetic variance already accounted for.

DISCUSSION: CONCERNS

- Interbull protocol relies on a number of 'outside' parameters
 - Proportion of residual additive genetic variance k
 - Ratio of realized versus estimated reliability f
- Possibly these can be derived from validation results
- But: many more traits in routine evaluation than in genomic evaluation
 E.g. lactation specific traits, predictor traits
- Values for *k* and *f* not readily available for all
 - Especially f seems pivotal to correct estimation of grel.
- Ideal: An approach that estimates correct REL_{SNP} or EDC_{SNP}
 - Would make possible a self-contained reliability estimation

FINAL REMARKS

- \bullet
- Given parameters used we get reasonable estimates lacksquare
- Correct estimates are contingent on correct f value \bullet

Reliability calculations using Interbull protocol seems feasible for routine use.

