

The Mendelian sampling test: experience with application to United Kingdom data

Raphael Mrode, Mike Coffey and Tomasz Krzyzelewski EGENES, SRUC, Edinburgh UK

Leading the way in Agriculture and Rural Research, Education and Consulting

- GBR participated in the MS test run
- Traits submitted:
- Production (M,F,P) (bulls & cows)
 - HOL, AYR, JER, GUE, BSW and MOB
- SCC: (bulls and cows)
 HOL, AYR, JER, GUE, BSW and MOB
- Longevity: (bulls only)
 HOL, AYR, JER, GUE, BSW and MOB
- Fertility: Hol (bulls only)

- Software easy to install and use
- Tomasz developed script that allow all traits to be executed at a go
- Manual with examples very helpful
- Possible Improvements:
- Currently Manual has information on the trait.summary file
- A bit more information on some of the other output files will be useful
- Trait.out; log-file , trait.dat

Summary of result

 GBR pass all traits about from calving interval for Hol (bulls) and protein yield for AYR (bulls)

HOL Bull fat yield and SCC

Fat yield

Birth years

SCC

NR56 CI Within-year genetic variances Within-year genetic variances 0.0030 80 0.0020 4 Gvar Gvar 8 0.0010 0 0.0000.0 -20 2000 2005 2010 2000 2005 2010 Birth years Birth years

HOL Bulls NR56 and CI

Investigating failure of CI

- Currently fertility evaluations is 6traits multivariate animal model evaluation
 - Calving interval, condition score, days to first service, testday milk at about day 110, number of services and NR56,
- Examine possible sources of failure
 - Examine different time periods for test
 - HOV adjustment for milk
 - Exclude milk from the analysis by setting covariance of milk to other traits to zero
 - Univariate CI analysis
 - None of the above corrected the trend in Vg
 - Apply HOV adjustment to CI

MS test with HOV applied

Within-year genetic variances

Birth years

Impact of HOV adjustment on bull trend for CI

AYR Bulls Milk and Protein

Milk

Protein

Within-year genetic variances

Within-year genetic variances 300 3e+05 200 Gvar 10 Gvar 1e+05 \odot -1e+05 -100 1990 1995 2000 2005 2010 1990 1995 2000 2005 2010 Birth years

Birth years

Examining failure of Ayr Protein

- Currently a GBR model for production is multi-breed but single trait across 5 lactations RRM model
- Pre-adjustment for HOV undertaken before fitting model for evaluations accounting levels of production
- Surprising then why protein would failed but milk and fat did not, given they pass through the same pipeline
- Possible actions
 - Examine different time period for test
 - Examining the HOV adjustment factors
 - Adjustment factors are Hol and versus non-Hol
 - Why will these work for all other breeds apart for AYR (More crossing breeding in AYR?)

Ayrshire Bull based on more recent (2000 or 2001 - 2012)

Within-year genetic variances

Examine Population structure in the two periods of time

Mean genetic levels for the different populations

Period	AYR		Swedish Red		N.A AYR		Nor Red	
	N	Mean	N	Mean	N	Mean	N	Mean
<2000	157	-6.4	8	8.7	29	-1.0	2	11.10
>2000	113	2.8	6	12.7	33	2.1	7	12.60

Conclusion

- Software easy to use
- Additional information in manual will be useful as I suggested earlier
- Motivates you to have a closer look at your models; so useful in that respect