INTRODUCTION The latest routine international evaluation for calving traits took place as scheduled at the Interbull Centre. Data from seventeen (17) countries were included in this evaluation. International genetic evaluations for calving traits of bulls from Australia, Austria-Germany, Belgium, Canada, Denmark-Finland-Sweden, France, Germany, Hungary, Ireland, Israel, Italy, Netherlands, Norway, Spain, Switzerland, the United Kingdom, Slovack Republic and the United States of America were computed. Brown Swiss, Holstein, and Red Dairy Cattle breed data were included in this evaluation. ### CHANGES IN NATIONAL PROCEDURES ----- Changes in the national genetic evaluation of calving traits are as follows: NOR RDC The rolling definition of hys is causing the daughters to distribute somewhat differently over hys-classes at each evaluation. Therefore some bulls occasionally may loose EDC although the number of daughters stay the same. Reliability changes is a function of the EDC changes. AUS ALL A small cohort of animals changed proof type from 12 previous (second crop daughters) back to 11 (only first crop daughters). The determination of a first and second crop proof type is based on the proportion of daughters born within 5 years of the bulls birth date (first crop) and those born after 5 years (second crop). The pedigree has been recently updated and completed so that a number of older daughters have been entering proofs and this has tripped the threshold from proof type causing the reversion from second to first crop daughter proof. DEU HOL/RDC Decrease in information due to data correction. ITA HOL Decrease in information due to editing system applied. CHE ALL Base change Decrease in information due to the continuous work on the rawdata by herd-book organizations and in the fact that data have been merged from two data bases (for HOL-CHE and SIM-CHE). ESP HOL Edits applied cause decrease in information NLD HOL All data collected by CRV has become available. So it is no longer the case that only data of bulls from bull owners who pay for it, is in the evaluation. USA ALL Beginning with the August 2017 evaluations, a new set of edits is being applied to the incoming Calving Ease phenotypic data. Among these changes, CDCB now requires pedigree and lactation data to be included in the database before the calving event is processed, causing decrease in information ## INTERBULL CHANGES COMPARED TO THE DECEMBER ROUTINE RUN Subsetting: #### _____ As decided by the ITC in Orlando, new subsetting was introduced in the september test run. Sub-setting is necessary for operational purposes and restrictions of time scales. To minimize the effect of subsetting, larger subsets with 10-12 countries and with 4 link providing countries have been applied. ``` Window: ----- According to the decision taken by ITC in Orlando, the following changes have been introduced in regards to the windows used for post processing: The upper bounds have been set to 0.99 as these were judged to have very little effect on evaluations. The lower values have been set to about the 25% percentile value. The largest changes are for the lower values for conformation traits, with the lowest window being 40% for OFL otherwise it is about 50% for all other confirmation traits. It is anticipated that these low values may not have large impact on evaluations since there were very few countries combinations whose estimated correlations fell between the old limit of 0.30 and these new limits.DATA AND METHOD OF ANALYSIS _____ Data were national genetic evaluations of AI sampled bulls with at least 10 daughters or 10 EDC (for clinical mastitis and maternal calving traits at least 50 daughters or 50 EDC, and for direct calving traits at least 50 calvings or 50 EDC) in at least 10 herds. Table 1 presents the amount of data included in this Interbull evaluation for all breeds. National proofs were first de-regressed within country and then analysed jointly with a linear model including the effects of evaluation country, genetic group of bull and bull merit. Heritability estimates used in both the de-regression and international evaluation were as in each country's national evaluation. Table 2 presents the date of evaluation as supplied by each country Estimated genetic parameters and sire standard deviations are shown in APPENDIX I and the corresponding number of common bulls are listed in APPENDIX II. ``` | SCIENTIFIC LITERATURE | |---| | The international genetic evaluation procedure is based on international work described in the following scientific publications: | | International genetic evaluation computation: Schaeffer. 1994. J. Dairy Sci. 77:2671-2678 Klei, 1998. Interbull Bulletin 17:3-7 | | Verification and Genetic trend validation: Klei et al., 2002. Interbull Bulletin 29:178-182. Boichard et al., 1995. J. Dairy Sci. 78:431-437 | | Weighting factors: Fikse and Banos, 2001. J. Dairy Sci. 84:1759-1767 | | De-regression: Sigurdsson and G. Banos. 1995. Acta Agric. Scand. 45:207-219 Jairath et al. 1998. J. Dairy Sci. Vol. 81:550-562 | | Genetic parameter estimation:
Klei and Weigel, 1998, Interbull Bulletin 17:8-14
Sullivan, 1999. Interbull Bulletin 22:146-148 | | Post-processing of estimated genetic correlations: Mark et al., 2003, Interbull Bulletin 30:126-135 Jorjani et al., 2003. J. Dairy Sci. 86:677-679 https://wiki.interbull.org/public/rG%20procedure?action=print | | Time edits Weigel and Banos. 1997. J. Dairy Sci. 80:3425-3430 | International reliability estimation Harris and Johnson. 1998. Interbull Bulletin 17:31-36 # NEXT ROUTINE INTERNATIONAL EVALUATION _____ Dates for the next routine evaluation can be found on http://www.interbull.org/ib/servicecalendar. ## NEXT TEST INTERNATIONAL EVALUATION _____ Dates for the next test run can be found on http://www.interbull.org/ib/servicecalendar. PUBLICATION OF INTERBULL TEST RUN ----- Test evaluation results are meant for review purposes only and should not be published. ^LTable 1. National evaluation data considered in the Interbull evaluation for calving (August Routine Evaluation 2018). Number of records for direct calving ease by breed | - | BSW | GUE | HOL | JER | RDC | SIM | |------------------------|-------------------|----------|--|----------|--------------------|---------| | AUS | | | 2249 | | | | | BEL | | | 972 | | | | | CAN | 146 | | 12083 | | 471 | | | CHE | 1829 | | 2157 | | | | | CZE | | | | | | | | DEA | 5194 | | | | | | | DEU | | | 18124 | | 243 | | | DFS | | | 10014 | | 6264 | | | ESP | | | 1854 | | | | | EST | | | | | | | | FRA | 321 | | 11872 | | | | | FRM | 321 | | 11072 | | | | | GBR | | | 2506 | | | | | HUN | | | 1680 | | | | | IRL | | | 1940 | | 60 | | | ISR | | | 414 | | 00 | | | ITA | | | 9407 | | | | | JPN | | | J 10 / | | | | | KOR | | | | | | | | LTU | | | | | | | | LVA | | | | | | | | NLD | 79 | | 14178 | | 28 | | | NOR | 19 | | 141/0 | | 3708 | | | NZL | | | 6967 | | 1061 | | | POL | | | 0907 | | 1001 | | | PRT | | | | | | | | SVK | | | 639 | | | | | SVN
SVN | | | 639 | | | | | | | | | | | | | URY | E 2 1 | | 24076 | | | | | USA | 531 | | 34976 | | | | | ZAF | | | | | | | | HRV | | | | | | | | MEX | | | | | | | | CAM | | | | | | | | ========
No.Records | =========
8100 | ======== | ====================================== | ======== | :========
11835 | ======= | | Pub. Proofs | 8528 | 0 | 120674 | 0 | 12196 | 0 | ^LAPPENDIX I. Sire standard deviations in diagonal and genetic correlations below diagonal | BSW | dce | | | | | | | | | | | | | | | | | |-------------------|-----------------------------|---------------------|--------------|---------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|---------------|----------------|--------------|------|-------|-------| | DEA
NLD
USA | DEA
9.82
0.91
0.78 | NLD
6.82
0.81 | USA
0.12 | CHE | CAN | FRA | | | | | | | | | | | | | CHE | 0.93 | 0.95 | 0.79 | 12.21 | 7 7 | | | | | | | | | | | | | | CAN
FRA | 0.86
0.80 | 0.95
0.91 | 0.86
0.85 | 0.95
0.86 | 7.57
0.90 | 0.76 | BSW | mce | | | | | | | | | | | | | | | | | | | DEA | NLD | USA | CHE | CAN | FRA | | | | | | | | | | | | | DEA
NLD | 10.87
0.85 | 5.87 | | | | | | | | | | | | | | | | | USA | 0.77 | 0.78 | 0.14 | | | | | | | | | | | | | | | | CHE
CAN | 0.88
0.61 | 0.82
0.79 | 0.86
0.84 | 16.06
0.75 | 6.35 | | | | | | | | | | | | | | FRA | 0.90 | 0.73 | 0.90 | 0.96 | 0.84 | 0.95 | HOL
 | dce
 | | | | | | | | | | | | | | | | | | AUS | AUS
2.98 | CAN | CHE | DFS | FRA | ISR | ITA | NLD | USA | GBR | HUN | DEU | BEL | IRL | NZL | SVK | ESP | | CAN | 0.81 | 6.57 | | | | | | | | | | | | | | | | | CHE | 0.76 | 0.95 | 10.34 | 11 50 | | | | | | | | | | | | | | | DFS
FRA | 0.78
0.79 | 0.93
0.96 | 0.90
0.96 | 11.78
0.91 | 0.93 | | | | | | | | | | | | | | ISR | 0.80 | 0.90 | 0.88 | 0.86 | 0.88 | 2.88 | | | | | | | | | | | | | ITA | 0.68 | 0.77 | 0.77 | 0.77 | 0.75 | 0.78 | 7.22 | | | | | | | | | | | | NLD | 0.82 | 0.96 | 0.93 | 0.93 | 0.93 | 0.88 | 0.76 | 6.98 | 0 10 | | | | | | | | | | USA
GBR | 0.72
0.81 | 0.87
0.80 | 0.86
0.78 | 0.82
0.77 | 0.89
0.78 | 0.84
0.81 | $0.74 \\ 0.74$ | 0.82
0.84 | 0.13
0.74 | 0.07 | | | | | | | | | HUN | 0.70 | 0.30 | 0.78 | 0.77 | 0.75 | 0.79 | 0.75 | 0.76 | 0.74 | 0.76 | 1.23 | | | | | | | | DEU | 0.79 | 0.89 | 0.88 | 0.88 | 0.92 | 0.83 | 0.75 | 0.90 | 0.81 | 0.78 | 0.75 | 13.08 | | | | | | | BEL | 0.67 | 0.77 | 0.77 | 0.75 | 0.74 | 0.80 | 0.74 | 0.75 | 0.74 | 0.75 | 0.76 | 0.75 | 10.09 | 1 4 5 | | | | | IRL
NZL | 0.69
0.70 | 0.86
0.78 | 0.82
0.79 | 0.83
0.80 | 0.83
0.77 | 0.90
0.79 | 0.73
0.75 | 0.85
0.81 | 0.77
0.76 | 0.74
0.76 | 0.74
0.75 | 0.77
0.77 | $0.74 \\ 0.74$ | 1.45
0.82 | 3.06 | | | | SVK | 0.72 | 0.78 | 0.79 | 0.78 | 0.78 | 0.82 | 0.78 | 0.78 | 0.77 | 0.79 | 0.73 | 0.77 | 0.74 | 0.79 | 0.78 | 12.60 | | | ESP | 0.70 | 0.77 | 0.77 | 0.77 | 0.77 | 0.80 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.78 | 11.31 | |
HOL |
mce | | | | | | | | | | | | | | | | | | |
CAN | CHE | DFS |
FRA | ISR |
ITA | NLD | USA |
GBR | HUN | DEU | BEL | SVK | ESP | | | | | CAN | 6.51 | | DFS | FKA | ISK | IIA | ИПР | USA | GBK | HON | DEO | חמט | SVK | БОР | | | | | CHE
DFS | 0.87
0.82 | 13.60
0.70 | 12.24 | | | | | | | | | | | | | | | | FRA | 0.82 | 0.70 | 0.76 | 1.30 | | | | | | | | | | | | | | | ISR | 0.79 | 0.71 | 0.79 | 0.75 | 2.63 | | | | | | | | | | | | | | ITA | 0.80 | 0.86 | 0.58 | 0.84 | 0.69 | 9.43 | | | | | | | | | | | | | NLD | 0.82 | 0.77 | 0.86 | 0.81 | 0.67 | 0.58 | 5.24 | 0 1 5 | | | | | | | | | | | USA
GBR | 0.89
0.66 | 0.89
0.79 | 0.76
0.58 | 0.95
0.78 | 0.79
0.63 | 0.82
0.67 | 0.80
0.64 | 0.15
0.71 | 0.04 | | | | | | | | | | HUN | 0.55 | 0.56 | 0.55 | 0.55 | 0.59 | 0.55 | 0.56 | 0.55 | 0.56 | 1.26 | | | | | | | | | DEU | 0.85 | 0.74 | 0.91 | 0.79 | 0.75 | 0.66 | 0.83 | 0.77 | 0.61 | 0.55 | 13.04 | | | | | | | | BEL
SVK | 0.67
0.56 | 0.68
0.58 | 0.74
0.56 | 0.75
0.56 | 0.62
0.64 | 0.59
0.56 | 0.77
0.56 | 0.68
0.56 | 0.59
0.57 | 0.56
0.56 | 0.74
0.55 | 11.01
0.57 | 16.02 | | | | | | ESP | 0.30 | 0.74 | 0.67 | 0.78 | 0.73 | 0.69 | 0.70 | 0.80 | 0.60 | 0.56 | 0.69 | 0.64 | 0.58 | 12.58 | | | | |
HOL | dsb | | | | | | | | | | | |------------|--------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------|---------|-------|-------| | AUS | AUS
2.99 | CAN | CHE | DFS | FRA | ISR | ITA | NLD | USA | HUN | | | CAN | 0.62 | 7.74 | | | | | | | | | | | CHE | 0.44 | 0.51 | 16.34 | | | | | | | | | | DFS | 0.70 | 0.87 | 0.47 | 12.68 | 0 55 | | | | | | | | FRA | 0.43 | 0.74 | 0.58 | 0.65 | 0.75 | 1 06 | | | | | | | ISR | 0.75 | 0.74 | 0.46 | 0.72 | 0.53 | 1.76 | 7 01 | | | | | | ITA
NLD | 0.74
0.44 | 0.58
0.77 | 0.36
0.72 | 0.65
0.69 | 0.42
0.66 | 0.59
0.57 | 7.21
0.35 | 4.29 | | | | | USA | 0.42 | 0.75 | 0.72 | 0.62 | 0.70 | 0.47 | 0.37 | 0.63 | 0.07 | | | | HUN | 0.76 | 0.53 | 0.37 | 0.53 | 0.37 | 0.72 | 0.54 | 0.36 | 0.37 | 1.10 | | | DEU | 0.56 | 0.78 | 0.56 | 0.80 | 0.62 | 0.74 | 0.47 | 0.73 | 0.61 | 0.42 | 12.73 | | | | | | | | | | | | | | | HOL | msb | | | | | | | | | | | | CAN | CAN | CHE | DFS | FRA | ISR | ITA | NLD | USA | HUN | DEU | | | CAN | 6.28
0.85 | 20.34 | | | | | | | | | | | CHE
DFS | 0.85
0.95 | 0.83 | 11.64 | | | | | | | | | | FRA | 0.89 | 0.83 | 0.87 | 0.93 | | | | | | | | | ISR | 0.89 | 0.83 | 0.87 | 0.81 | 1.75 | | | | | | | | ITA | 0.53 | 0.58 | 0.52 | 0.54 | 0.67 | 9.43 | | | | | | | NLD | 0.93 | 0.78 | 0.94 | 0.81 | 0.82 | 0.52 | 4.27 | | | | | | USA | 0.88 | 0.82 | 0.83 | 0.88 | 0.81 | 0.52 | 0.78 | 0.13 | | | | | HUN | 0.54 | 0.54 | 0.52 | 0.53 | 0.53 | 0.48 | 0.53 | 0.51 | 1.22 | 10 04 | | | DEU | 0.95 | 0.84 | 0.96 | 0.85 | 0.89 | 0.53 | 0.93 | 0.81 | 0.52 | 13.34 | | | RDC | dce | | | | | | | | | | | | | CAN | DFS | NOR | NLD | DEU | IRL | NZL | | | | | | CAN | 6.57 | | | | | | | | | | | | DFS | | 11.29 | | | | | | | | | | | NOR | 0.89 | 0.95 | 13.11 | 4 00 | | | | | | | | | NLD | 0.96 | 0.93 | 0.92 | 4.99 | 10 45 | | | | | | | | DEU | 0.89 | 0.90 | 0.92 | 0.91 | 13.45 | 0 00 | | | | | | | IRL
NZL | 0.86
0.79 | 0.83
0.80 | 0.83
0.80 | 0.85
0.82 | 0.78
0.79 | 0.98
0.83 | 2.69 | | | | | | | 0.79 | | | | | | | | | | | | RDC | mce | | | | | | | | | | | | | CAN | DFS | NOR | DEU | | | | | | | | | CAN | 7.02 | ~ | | | | | | | | | | | DFS | 0.81 | 12.22 | | | | | | | | | | | NOR | 0.72 | 0.78 | | | | | | | | | | | DEU | 0.82 | 0.83 | 0.76 | 11.92 | | | | | | | | | | NDIX II. I | | | bulls | | | | | | | | | BSW | n bulls be
n three qu | | | above di | iagonal | | | | | | | | | DEA NLD | | | FRA | | | | | | | | | DEA | | 176 49 | | | | | | | | | | | | | 23 | | | | | | | | | | | | | 0 19 | | | | | | | | | | | CHE | 371 29 | 144 | υ 82 | 123 | | | | | | | | | CAN
FRA | 70
127 | 10
22 | 87
50 | 64
85 | 0
40 | 47
0 | | | | | | | | | | | | |--|---|---|--|---|--|---|------------------|---|---|--|--|---|---|--|--|---|--| | BSW | | | | | | | | | | | | | | | | | | | commo | n thr | ree qu | arter. | sib | nal
group
CAN | | e diag | gonal | | | | | | | | | | | DEA
NLD
USA
CHE
CAN
FRA | 0
35
89
305
25
89 | 45
0
15
24
6 | 107
18
0
82
23
39 | 404
26
95
0
23
60 | 30
9
26
27
0
19 | 127
23
45
81
21 | | | | | | | | | | | | | BSW | | | | | | | | | | | | | | | | | | | BSW | | | | | | | | | | | | | | | | | | | GUE | | | | | | | | | | | | | | | | | | | GUE | | | | | | | | | | | | | | | | | | | GUE | | | | | | | | | | | | | | | | | | | GUE | | | | | | | | | | | | | | | | | | | HOL | | | | | | | | | | | | | | | | | | | commo | | | arter. | sib | nal
group
FRA | | | | | GBR | HUN | DEU | BEL | IRL | NZL | SVK | ESP | | | 435
732
301
202
555
302
318
496
68
289 | 678
0
502
780
831
51
1174
886
3183
456
527
1382
467
405
564
181
547 | 616
0
301
390
16
412
440
562
216
165
655
328
251
229
54
252 | 376
0
588
58
797
731
940
313
313
1038
392
385
423
109
392 | 574
1210
450
1202
0
42
822
640
990
342
360
929
523
436
399
162
497 | 29
82:
76:
0
53
67
80:
22
32
71:
19
35
51
12
30 | 1266 : 1561 : 80 | 1122
502
1270
1382
93
1341
0
1249
394
276
1636
570
507
715
172
425 | 673
1547
1926
95
2402
1897
0
561
628
1765
479
513
852
220
590 | | 235
490
611
47
675
509
796
348
0
505
195
203
192
105
271 | | 311
480
326
451
527
34
501
564
519
310
250
662
264
76
335 | 332
414
260
466
498
506
578
540
391
246
604
309
496
248 | 520
628
268
648
660
69
707
872
915
388
306
748
302
555
97
248 | 117
261
118
217
263
26
276
288
323
150
164
460
139
114
161
0
73 | 362
761
312
516
633
51
775
549
857
382
371
835
343
260
316
146
0 | | HOL |
b] | la ba |] d | | 1 | | | | | | | | | | | | | | commo | n thr
CAN | ree qu
CHE | arter.
DFS | sib
FRA | nal
group
ISR | ITA | NLD | USA | GBR | | | | | | | | | | CAN
CHE
DFS
FRA
ISR
ITA
NLD
USA | 0
387
772
620
43
879
768 | 507
0
363
357
15
367
455 | 970 | 955
415 | 64
29
93
80
0
48
76 | 1192
445
1240
1350
81
0
820 | | 2011
559
1524
1704
99
1902 | 570
316
630
558
62
628
624 | 616
252
608
642
59
676
598 | | 414
327
476
517
37
479
599
477 | | | | | | | | 607
517
1078 | | 611
414
1292 | 519
374
827 | | 504
1059 | 394
1647 | 693
1552 | 751 | | 722
867
0 | 333
272
636 | 132
159
325 | 369
382
824 | |--|--|---|--|--------------------------------------|---|--|---|--|--|--|--|-------------------|-------------------|-------------------| | | 411
145
400 | 319
47
217 | 446
101
378 | | 21
8
25 | 443
144
447 | 150 | 431
181
451 | 74 | | 652
233
443 | | 115
0
53 | 309
125
0 | | HOL | HOL | | | | | | | | | | | | | | | |
common bulls below diagonal
common three quarter sib group above diagonal | | | | | | | | | | | | | | | commo | on thi
AUS | | | | group
FRA | | | | | HUN | DEU | | | | | CAN
CHE
DFS
FRA
ISR | 163
244
246
13 | 0
502
782
771
50 | 215
613
0
301
382
16 | 391
1033
377
0
543
58 | 370
1067
438
1064
0
40 | 29
68
29
84
65 | 458
1539
499
1271
1407
80 | 448
1259
570
1389
1333
94 | 561
2743
634
1432
1527
91 | 137
488
189
408
472
35 | 479
1939
770
1732
1773
88 | | | | | ITA
NLD
USA
HUN
DEU | 332
473
73 | 1153
2963
384 | 412
528
529
136
658 | 256 | 740
836
788
282
896 | 78
26 | 1093
1437
368 | 1498
0
1458
311
1970 | 1879
0
438 | 462
585
0 | | | | | | HOL | | | | | | | | | | | | | | | | | | cee qu | | sib | nal
group
ISR | | | | | DEU | | | | | | CHE
DFS
FRA
ISR
ITA
NLD
USA
HUN | 0
386
786
593
43
877
783
1819
387
1044 | 0
369
344
15
366
472
434
154 | 952
428
0
581
63
825
1203
1055
346
1295 | 404
1204 | 29
93
75
0
48
74
77
27 | 444
1241
1270
81
0
846
1178
401 | 526
1590
1329
96
1238
0
1086
357 | 1310
1319
91 | 210
510
505
45
551
510 | 1639
713
2164
1824
104
1874
2281
2206
710
0 | | | | | |
JER | | | | | | | | | | | | | | | | JER JER JER JER RDC | | | | | | | | | | | | | | | | | | cee qu | elow d
uarter
NOR | sib | nal
group
DEU | | ze dia
NZL | agonal | L | | | | | | | CAN DFS NOR NLD DEU IRL NZL | 0
143
4
3
10
3
56 | 142
0
89
21
51
15 | 5
115
0
13
19
50
34 | 3
21
13
0
11
6 | 10
58
20
11
0
6 | 3
18
51
6
6 | 56
119
35
10
17
11 | | | | | | | | | RDC | | | | | | | | | | | | | | |