Simultaneous de-regression of cow and bull breeding values

Mario Calus Ghyslaine Schopen Roel Veerkamp

June 20, 2014

Introduction

Accuracy of genomic prediction depends on size of the reference population (RP)

RP have been extended by:

- Genotyping all bulls with EBV (nationally)
- Exchanging genotypes of bulls (internationally)

Further extension is possible by including cows

• How should cow information be included properly?

Introduction

- Genomic prediction models use deregressed proofs (DRP)
- (Approximate) de-regression procedures used for bulls may not be appropriate for cows
 - Reliability Cow EBV << Reliability Bull EBV
- Objective is to test alternative approach to de-regress
 - EBV (=DRP)
 - EDC (i.e. appropriate weights of de-regressed EBV)

"De-regression" of EDC

Obtain weights for DRP, i.e. "dEDC" for all animals:

1. Initialize dEDC = EDC_{EBV}

For each animal:

- 2. Compute EDC due to information in the RP (i.e. EDC_{RP})
- 3. Compute $EDC_{DRP} = EDC_{EBV} EDC_{RP}$
- 4. Repeat 2 & 3 until convergence

Per iteration (where EDC_{DRP} are computed for all animals):

- Set up and invert coefficient matrix of MME for RP once
- Per animal: adjust inverse to compute its EDC_{RP}

De-regression of EBV

Matrix de-regression:

$$\begin{bmatrix} \mathbf{X}' R^{-1} \mathbf{X} & X' R^{-1} \mathbf{Z} \\ Z' R^{-1} \mathbf{X} & \mathbf{Z}' R^{-1} \mathbf{Z} + A^{-1} \frac{\sigma_e^2}{\sigma_A^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \hat{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}' R^{-1} \mathbf{y} \\ \mathbf{Z}' R^{-1} \mathbf{y} \end{bmatrix}$$

- Iteratively compute *DRPs* and $\hat{\mu}$ to account for mean EBV
- Using de-regressed EDC (*R*⁻¹)

Procedure to test de-regression method

- 1. Compute EBV
- 2. For animals in RP:
 - a) "De-regress" EDC (=dEDC)
 - b) De-regress EBV (=DRP)
 - c) Compute EBV using dEDC and DRP

Expectations:

EBV (2c) = EBV (1)

- For bulls: EDC (2a) = EDC from daughters outside RP
- For cows: EDC (2a) = EDC from own records

Data used

- 15,252 animals in RP
 - 1,532 bulls & 13,720 cows
- Phenotypes were simulated:
 - Such that "true" weights (EDC) were known
 - 50-200 daughters (with 1 record) per sire (outside RP)
 - 1-5 records per cow in the data

"De-regressed" EDC bulls (after 5 iterations)

"De-regressed" EDC cows (after 5 iterations)

Original vs. final EBV

Reliability original vs. final EBV

Conclusions

- "De-regressed" EDC overestimate true EDC
 - Especially for bulls with many (grand)daughters in RP
- Final and initial EBV matched very well
- Similar results were obtained with 1 iteration to deregress EDCs (not shown)

