

GÉN SANTÉ: Improving productive health of dairy cows by genomic selection and management

H. Leclerc, A. Barbat, M. Philippe, S. Fritz, J-B Davière, L. Manciaux, F. Guillaume, T. De Bretagne, <u>S. Mattalia</u> and D. Boichard

A collective achievement

GÉN®) SANTÊ

Industry partners From upstream

- Breeding compagnies
- Milk recording / herd support organisations

To downstream

- Milk processing industry

Scientific partners

- INRA
 - IDELE
- ALLICE

Gathered in UMT 3G

A first project bringing together in France stakeholders the whole dairy cattle sector!

Population and phenotypes available

GÉN® SAN

3 (groups of) traits :

All phenotypes having the most significant impact on herd health, animal welfare, and economic viability of herd, and not already evaluated (eg. Mastitis):

- Ketosis: ketone bodies estimated from MIR analysis at monthly test-day Evaluations available since Aug. 2016
- Claw health traits recorded by trained trimmers
- Other health traits recorded by breeders for metritis, retained placenta, milk fever, displaced abomasum...

A genetic evaluation on Ketosis

What is ketosis? How to control it?

GÉN©)SANTÊ

The main metabolic disease of dairy cows in early lactation

➔ What impacts?

- Decrease in milk production (-300 to -500 kg/lact)
- Impact on reproduction (cyclicity delayed and success at first service reduce up to 20%)
- Increased risk of retained placenta and displaced abomasum (x4 à 8)
- Increase in clinical mastitis (x3)

How often?

- Clinical ketosis: 3 to 4 % of cows
- Sub-clinical ketosis: 12 to 20 % of cows

Aim: Prevent and reduce the risk of ketosis in dairy herd

- Management: From Cetodetect® indicator and specific technical services
- **Genetic:** a genetic evaluation of ketone bodies to improve genetic level of animals by selection.

1st step: a polygenic evaluation

A large population

• 2 traits for genetic evaluations: log-transformed concentrations estimated from MIR equations:

GÉN® SAN

- acetone
- σβ-hydroxybutyrate (BHB)
- 1 trait for validation and interpretation of the results: Cetodetect® indicator determined by a decision tree from acetone and BHB concentrations (→health status of animals)
- **Population:** cows of herds from Western France with performances since 2012

Data edits

- Herds enrolled in official milk recording
- Purebred animals
- Lactations 1-5,
- Days In Milk 7 to 120

Data available for genetic parameters estimation

	Data	Nb Herd x Test-day	Nb Herds	Nb females	Nb lactations
Holstein	2 688 583	183 436	12 378	806 039	1 097 930
Normande	451 808	32 803	2 890	140 015	189 798

Model

- 2 traits, animal model, repeated data over lactations
- Fixed effects:
 - herd x year
 - month x year of test-day
 - DIM x parity
 - age at 1st calving (or days dry x parity for multiparous)
 - milk analysis laboratory x year
- Random effecs:
 - Genetic value
 - Permanent envt

4 1 1 1 1 4 1 4 1

Heritabilitie Genetic cor		bilities and ic correlatio	ations Repetablifities and correlations betw.		PE	
7.		log[BHB]	log[acet]		log[BHB]	log[ace
	log[BHB]	0.12	0.851	log[BHB]	0.22	
	log[acet]		0.1	log[acet]	0.879	0.18

		log[BHB]	log[acet]		log[BHB]	log[acet]
: and the	log[BHB]	0.15	0.89	log[BHB]	0.26	
	log[acet]		0.16	log[acet]	0.91	0.24

- Moderate/low h^2 , but low rpt (\rightarrow each performance brings much info)
- Analysis of EBVs with Single trait or Multiple trait model: very high EBV correlation

 \rightarrow ST model for routine evaluation

Marker-Assisted (MA) BLUP Genomic Evaluation:

- Between 250 and 3000 pre-detected QTL (BayesC π) using haplotypes
- + SNP from EuroG10k chip for the residual polygenic part

Reference population = males + females

	Holstein	Normande
# genotyped cows with performances	26 899	5 832
# genotyped sires with DYD of ungenotyped daughters	4 314	1 038

Data available

• >7 million of data in Holstein and 1.36 million in Normande

	Holstein	Normande
# females with EBV	1 394 951	257 785
# males with EBV	6 069	1 077
# females with GEBV	137 367	28 980
# males with GEBV	26 200	4 811

- 2 new indexes under **GÉN** SANTÉ label
- Ketosis index = 50% BHB + 50% acetone
- Productive health index =

30% Ketosis index30% Udder health index30% Fertility index10% Longevity

Evolution of the productive health index in the next years to **include new traits** such as claw health traits Incidence of ketosis as a fonction of female genomic index

GÉN®)SANTÉ

Reliability

- Genomic evaluation:

	Holstein	Normande
Young animals without performance	0.66	0.58

• Reliability of Ketosis index close to that of other functional traits

- **Polygenic evaluation :**

- Parent average reliability around 0,30
- Cows with performances: from 0.50 to 0.60
- Bulls : >0.90 when >100 daughters with performances

GENOSANTE label

Polygenic indexes available for herds subscribing to CETODETECT® services

Genomic indexes available for all animals genotyped by EVOLUTION and breeding compagnies partners of GÉNOSANTE

Conclusion

GÉNOSANTÉ is a collective achievement around a joint project with shared interests of the entire dairy cattle sector:

- For breeders: cows resistant to ketosis:
 - Limit the use of drugs and time spent to individual care.
 - Reduce production costs / increase profitability
- For herd support organizations:
 - Enhance Cetodetect® services
- For breeding companies:
 - A tool for differentiation in a competitive environment

Additional health traits are planned for next year...

Thank you for your attention

