Genetic parameters of immune response estimated using genetically divergent lines of Holstein-Friesian dairy heifers

M.D. Price, M.D. Camara, J.R. Bryant, T.M. Grala, S. Meier and C.R. Burke

DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand



## Background

- Fertility research herd (Meier et al. 2017)
  - ~540 Holstein-Friesian heifers (2015 born)
  - From assortative mating of high or low fertility parents
- Research aims
  - Underlying physiology driving fertility differences
  - New management strategies
  - New traits to predict fertility ( $h^2 = 0.03$ )



# Immune Response (IR)

Immunity impacts reproductive function

- Immune cells key to successful pregnancy (Fair 2015)
- Post-partum uterine recovery
- Previous IR studies:
  - Heritability (*h*<sup>2</sup>): 0.16 to 0.64 (Mallard *et al.*, 1983; Wagter *et al.*, 2000; Hernández *et al.*, 2006; Thompson-Crispi *et al.*, 2012)
  - Genetic Correlation (r<sub>g</sub>) with fertility: -0.19 to 0.20 (Thompson-Crispi *et al.*, 2012)



# **Objectives**

- Estimate genetic parameters in NZ Holstein-Friesian dairy cattle:
  - IR (3 traits)  $h^2$  and  $r_g$
  - IR  $r_g$  with Breeding Worth (BW) index traits
    - In NZ, BW composed of 8 traits (including fertility)
- Account for bias due to herd structure



- 539 Holstein-Friesian heifers
  - Born across 379 herds (June-Sept 2015)
  - From assortative mating of high/low fertility BV parents
     → High & Low fertility heifer lines
- > 7 "Contemporary Groups" (CG)
- Pedigree of 10,992 animals
  - 18 generations deep



Immunization protocol (Thompson-Crispi et al., 2012)

- Immunized at ~220 days old
- AMIR0  $\rightarrow$  Control covariate AMIR14 AMIR21 Response variates Antibody-mediated IR (AMIR)
  - HEWL @ days 0 & 14
  - IgG1 conc. @ days 0, 14 & 21
- Cell-mediated IR (CMIR)

  - *C. albicans*/control @ day 21
     Log skinfold thickness ratio @ day 23
     CMIRc → Control covariate
     CMIRt → Response variate



- > BLUP mixed model:
  - $y = CG + control + a + e, \quad y \in \{AMIR14, AMIR21, CMIRt, nEBV\}$
  - Univariate model  $\rightarrow h^2$
  - Bivariate model  $\rightarrow r_g$
- Estimated Breeding Values (EBV) of BW:
  - De-regressed (dEBV) by ÷ reliability (Garrick et al. 2009)
  - Noise added (nEBV) from  $N(0,\sigma_e^2)$
  - 100 runs with noise re-sampling  $\rightarrow$  mean  $r_q \pm SE$



- $r_g$  between nEBV and IR also estimated via a Pearson correlation
  - Simple, and used as validation (no SE though)
- > Explored herd divergence in fertility
  - Pedigree determined to be deep enough



#### **Results & Discussion**

|                  | AMIR14           | AMIR21          | CMIRt            |                  |
|------------------|------------------|-----------------|------------------|------------------|
| AMIR14           | $0.44 \pm 0.14$  | $0.67 \pm 0.17$ | $-0.44 \pm 0.43$ | $r_g$            |
| AMIR21           | $0.44 \pm 0.04$  | 0.47 ± 0.15     | $-0.07 \pm 0.40$ |                  |
| CMIRt            | $-0.03 \pm 0.05$ | $0.01 \pm 0.05$ | 0.11 ± 0.10      |                  |
| r <sub>p</sub> — | ×                |                 |                  | ► h <sup>2</sup> |



#### **Results & Discussion**

|            |      | AMIR14          | AMIR21          | CMIRt            |
|------------|------|-----------------|-----------------|------------------|
| BW trait   | h²   | $r_g \pm SE$    | $r_g \pm SE$    | $r_g \pm SE$     |
| Protein    | 0.31 | -0.10 ± 0.22    | -0.13 ± 0.21    | -0.39 ± 0.31     |
| Fat        | 0.33 | -0.22 ± 0.21    | -0.10 ± 0.21    | -0.24 ± 0.29     |
| Volume     | 0.36 | -0.12 ± 0.20    | -0.08 ± 0.20    | $-0.40 \pm 0.32$ |
| Liveweight | 0.35 | -0.15 ± 0.17    | -0.22 ± 0.17    | *                |
| Fertility  | 0.03 | 0.09 ± 0.22     | -0.17 ± 0.21    | -0.04 ± 0.32     |
| SCS        | 0.12 | $0.05 \pm 0.25$ | $0.03 \pm 0.25$ | 0.10 ± 0.39      |
| RSv        | 0.04 | $0.03 \pm 0.62$ | -0.08 ± 0.41    | 0.17 ± 0.58      |
| BCS        | 0.19 | $0.02 \pm 0.19$ | -0.15 ± 0.18    | $0.19 \pm 0.27$  |



### Conclusions

- > IR  $h^2$  low/moderate
- > AMIR & CMIR antagonistic

An IR index should have both AMIR & CMIR

- > Weak genetic correlations between IR & BW traits
  - IR unlikely helpful as predictor trait ← including for Fertility
  - Selection on IR or BW unlikely to affect each other
    - Caution however, as  $r_g$  generally unfavourable still
- Widespread IR recording impractical

 $\rightarrow$  Genomic selection reference population



# Acknowledgements

- Funded by partnership between NZ MBIE and NZ dairy farmers via DairyNZ Inc.
- In-kind support from LIC and CRV Ambreed
- DairyNZ farm & technical staff for data collection
- Dorian Garrick for input to address herd divergence







•  $r_q$  with EBV verified by Pearson correlation

From IR univar  $\sigma_{IR}^2 \times \sigma_{EBV}^2$  Resid. from bivar. *fixed* model;  $\sigma_{e}^2 \approx \sigma_{a}^2$  as EBV genetic est.

- SE not available

- Accounting for fertility divergence
  - If divergence between lines present in founders, and
  - If fertility  $r_g > 0$  with trait X, then
  - Model for X req. 2 gen. distributions
    - Fertility line term (GG or fixed effect)





- Distribution of A-matrix heifer coefficients
  - Apart from sibs, both
     within- & between-line
     ~0.07
  - ∴ pedigree deep enough;
    1 genetic distribution ok



|            |      | AMIR14           |         | AMIR21           |         | CMIRt            |         |
|------------|------|------------------|---------|------------------|---------|------------------|---------|
| BW trait   | h²   | Resampling       | Pearson | Resampling       | Pearson | Resampling       | Pearson |
| Protein    | 0.31 | -0.10 ± 0.22     | -0.05   | -0.13 ± 0.21     | -0.06   | -0.39 ± 0.31     | -0.05   |
| Fat        | 0.33 | -0.22 ± 0.21     | -0.15   | -0.10 ± 0.21     | -0.03   | -0.24 ± 0.29     | 0.05    |
| Volume     | 0.36 | $-0.12 \pm 0.20$ | 0.00    | $-0.08 \pm 0.20$ | 0.02    | $-0.40 \pm 0.32$ | -0.08   |
| Liveweight | 0.35 | -0.15 ± 0.17     | -0.16   | $-0.22 \pm 0.17$ | -0.18   | *                | 0.33    |
| Fertility  | 0.03 | $0.09 \pm 0.22$  | 0.10    | -0.17 ± 0.21     | -0.05   | $-0.04 \pm 0.32$ | -0.07   |
| SCS        | 0.12 | $0.05 \pm 0.25$  | -0.01   | $0.03 \pm 0.25$  | -0.03   | 0.10 ± 0.39      | 0.06    |
| RSv        | 0.04 | $0.03 \pm 0.62$  | -0.01   | $-0.08 \pm 0.41$ | -0.01   | 0.17 ± 0.58      | 0.19    |
| BCS        | 0.19 | $0.02 \pm 0.19$  | 0.05    | -0.15 ± 0.18     | -0.09   | 0.19 ± 0.27      | 0.08    |

