

Comparing the use of dry matter intake and residual feed intake to improve feed efficiency in Holstein cattle

Kerry Houlahan¹, F.S. Schenkel¹, F. Miglior¹, G.A. Oliveira Jr¹, A. Fleming², T.C.S Chud¹, C.F. Baes^{1, 3}

¹ Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Canada ²Canadian Dairy Network, Guelph, Canada ³Institute of Constinue Voteviese Faculty, University of Barry, Switzerland

³Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Introduction

- Feed accounts for over **50%** of on-farm costs
- Animals with high genetic potential for production eat more
- More efficient cows have potential to decrease feed costs while maintaining production
- Selection on feed efficiency has been successful in other species:
 - Poultry
 - Swine
 - Aquaculture

Beever et al., 2007; Hemme et al., 2014; Connor, 2016.

Compare the use of DMI and RFI to improve feed efficiency in Holstein cattle through deterministic modeling

Base Index:

 $BASE = b_1(FY) + b_2(PY) + b_3(BCS) + b_4(STAT) + b_5(AFS) + b_6(FSTC) + b_7(CK) + b_8(DA)$

DMI Index:

 $DMI = BASE + b_9(DMI)$

RFI Index:

 $RFI = BASE + b_9(RFI)$

FY = fat yield, PY = protein yield, BCS = body condition score, STAT = stature, AFS = age at first service, FSTC = first service to conception, CK = clinical ketosis, DA = displaced abomasum, DMI = dry matter intake, RFI = residual feed intake

Parameters

Trait	Number of Records	$\pmb{\sigma}_{p}$	h²	Genomic Accuracy
Fat yield (kg)	456,939	61.91	0.32	0.80
Protein yield (kg)	456,939	47.03	0.27ª	0.79
Body condition score (score)	391,319	0.36	0.24 ^b	0.77
Stature (cm)	391,319	3.48	0.46ª	0.77
Age at first service (days)	495,022	54.22	0.05ª	0.69
First service to conception (days)	399,339	46.34	0.03ª	0.74
Clinical ketosis (case)	101,374	0.21	0.04 ª	0.61
Displaced abomasum (case)	239,257	0.15	0.02ª	0.59
Dry matter intake (kg/day)	1,909	2.45	0.49ª	0.591
Residual feed intake (kg/day)	1,595	2.25	0.28	0.402

^aStandard deviation < 0.10 ^bStandard deviation < 0.10 ¹*Miglior et al., 2018,* ²*Pryce et al., 2014*

Correlations

	FY	PY	BCS	STAT	AFS	FSTC	CK	DA	DMI	RFI
Fat yield										
Protein yield										
Body Condition Score										
Stature										
Age at first service										
First service to conception										
Clinical ketosis										
Displaced abomasum										
Dry matter intake										
Residual feed intake										

1.0

Genetic correlations (above diagonal) and phenotypic correlations (below diagonal)

Interbull Annual Meeting - June 23 2019 - Cincinnati Ohio, USA - Houlahan et al.

-1.0

Breeding Structure

Trait Response to Selection

	FY kg	PY kg	BCS score	STAT cm	AFS days	FSTC days	CK case	DA case	DMI kg/day	RFI kg/day
BASE	14.68	9.44	0.00	0.05	-2.49	1.23	0.00	0.00	-	-
DMI	14.63	9.59	-0.01	0.05	-1.80	1.76	0.00	0.00	0.03	-
RFI	14.85	9.60	-0.01	0.05	-2.39	1.31	0.00	0.00	-	0.05

FY = fat yield, PY = protein yield, BCS = body condition score, STAT = stature, AFS = age at first service, FSTC = first service to conception, CK = clinical ketosis, DA = displaced abomasum, DMI = dry matter intake, RFI = residual feed intake

Proportion of Response to Selection

Projected Response to Selection

Amount of Dry Matter Saved (kg)

Amount of Money Saved (\$CAD)

Projected Response to Selection

Amount of Dry Matter Saved (kg)

Amount of Money Saved (\$CAD)

- Selecting on DMI or RFI will improve feed efficiency
- Improving feed efficiency does not show detrimental effects on other traits
- Increasing the weight on RFI could result in a similar response to selection as DMI

Acknowledgements

