Comparing the use of dry matter intake and residual feed intake to improve feed efficiency in Holstein cattle

Kerry Houlahan¹, F.S. Schenkel¹, F. Miglior¹, G.A. Oliveira Jr¹, A. Fleming², T.C.S Chud¹, C.F. Baes¹, ³

¹ Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Canada
² Canadian Dairy Network, Guelph, Canada
³ Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
• Feed accounts for over **50%** of on-farm costs

• Animals with high genetic potential for production eat more

• More efficient cows have potential to decrease feed costs while maintaining production

• Selection on feed efficiency has been successful in other species:
 – Poultry
 – Swine
 – Aquaculture

Beever et al., 2007; Hemme et al., 2014; Connor, 2016.
Objective

Compare the use of DMI and RFI to improve feed efficiency in Holstein cattle through deterministic modeling
Scenarios

Base Index:

\[BASE = b_1(FY) + b_2(PY) + b_3(BCS) + b_4(STAT) + b_5(AFS) + b_6(FSTC) + b_7(CK) + b_8(DA) \]

DMI Index:

\[DMI = BASE + b_9(DMI) \]

RFI Index:

\[RFI = BASE + b_9(RFI) \]

FY = fat yield, PY = protein yield, BCS = body condition score, STAT = stature, AFS = age at first service, FSTC = first service to conception, CK = clinical ketosis, DA = displaced abomasum, DMI = dry matter intake, RFI = residual feed intake
Parameters

<table>
<thead>
<tr>
<th>Trait</th>
<th>Number of Records</th>
<th>σ_p</th>
<th>h^2</th>
<th>Genomic Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat yield (kg)</td>
<td>456,939</td>
<td>61.91</td>
<td>0.32b</td>
<td>0.80</td>
</tr>
<tr>
<td>Protein yield (kg)</td>
<td>456,939</td>
<td>47.03</td>
<td>0.27a</td>
<td>0.79</td>
</tr>
<tr>
<td>Body condition score (score)</td>
<td>391,319</td>
<td>0.36</td>
<td>0.24b</td>
<td>0.77</td>
</tr>
<tr>
<td>Stature (cm)</td>
<td>391,319</td>
<td>3.48</td>
<td>0.46a</td>
<td>0.77</td>
</tr>
<tr>
<td>Age at first service (days)</td>
<td>495,022</td>
<td>54.22</td>
<td>0.05a</td>
<td>0.69</td>
</tr>
<tr>
<td>First service to conception (days)</td>
<td>399,339</td>
<td>46.34</td>
<td>0.03a</td>
<td>0.74</td>
</tr>
<tr>
<td>Clinical ketosis (case)</td>
<td>101,374</td>
<td>0.21</td>
<td>0.04a</td>
<td>0.61</td>
</tr>
<tr>
<td>Displaced abomasum (case)</td>
<td>239,257</td>
<td>0.15</td>
<td>0.02a</td>
<td>0.59</td>
</tr>
<tr>
<td>Dry matter intake (kg/day)</td>
<td>1,909</td>
<td>2.45</td>
<td>0.49a</td>
<td>0.591</td>
</tr>
<tr>
<td>Residual feed intake (kg/day)</td>
<td>1,595</td>
<td>2.25</td>
<td>0.28b</td>
<td>0.402</td>
</tr>
</tbody>
</table>

aStandard deviation < 0.10 bStandard deviation < 0.10 1Miglior et al., 2018, 2Pryce et al., 2014
<table>
<thead>
<tr>
<th></th>
<th>FY</th>
<th>PY</th>
<th>BCS</th>
<th>STAT</th>
<th>AFS</th>
<th>FSTC</th>
<th>CK</th>
<th>DA</th>
<th>DMI</th>
<th>RFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat yield</td>
<td></td>
</tr>
<tr>
<td>Protein yield</td>
<td></td>
</tr>
<tr>
<td>Body Condition Score</td>
<td></td>
</tr>
<tr>
<td>Stature</td>
<td></td>
</tr>
<tr>
<td>Age at first service</td>
<td></td>
</tr>
<tr>
<td>First service to conception</td>
<td></td>
</tr>
<tr>
<td>Clinical ketosis</td>
<td></td>
</tr>
<tr>
<td>Displaced abomasum</td>
<td></td>
</tr>
<tr>
<td>Dry matter intake</td>
<td></td>
</tr>
<tr>
<td>Residual feed intake</td>
<td></td>
</tr>
</tbody>
</table>

Genetic correlations (above diagonal) and phenotypic correlations (below diagonal)

Interbull Annual Meeting - June 23 2019 - Cincinnati Ohio, USA - Houllahan et al.
Breeding Structure

Genotyped Bull Calves
7% selected

Genomic Bulls
5% selected

Proven Bulls

Genomic Bulls
100% of matings

Elite Dams
70% of matings

Dams of Cows
30% of matings

Heifer Calves
10% selected

Elite Dams
85% selected

Dams of Cows

Interbull Annual Meeting - June 23 2019 - Cincinnati Ohio, USA - Houlahan et al.
Trait Response to Selection

<table>
<thead>
<tr>
<th>FY (kg)</th>
<th>PY (kg)</th>
<th>BCS score</th>
<th>STAT cm</th>
<th>AFS days</th>
<th>FSTC days</th>
<th>CK case</th>
<th>DA case</th>
<th>DMI kg/day</th>
<th>RFI kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>14.68</td>
<td>9.44</td>
<td>0.00</td>
<td>0.05</td>
<td>-2.49</td>
<td>1.23</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>DMI</td>
<td>14.63</td>
<td>9.59</td>
<td>-0.01</td>
<td>0.05</td>
<td>-1.80</td>
<td>1.76</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>RFI</td>
<td>14.85</td>
<td>9.60</td>
<td>-0.01</td>
<td>0.05</td>
<td>-2.39</td>
<td>1.31</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
</tr>
</tbody>
</table>

FY = fat yield, PY = protein yield, BCS = body condition score, STAT = stature, AFS = age at first service, FSTC = first service to conception, CK = clinical ketosis, DA = displaced abomasum, DMI = dry matter intake, RFI = residual feed intake
Projecting Response to Selection

Cumulative Response per Cow for Feed Efficiency using DMI

Amount of Dry Matter Saved (kg) vs. Amount of Money Saved ($CAD)

- Amount of Dry Matter Saved
- Amount of Money Saved

Year

Interbull Annual Meeting - June 23 2019 - Cincinnati Ohio, USA - Houihan et al.
Projected Response to Selection

Cumulative Response per Cow for Feed Efficiency using RFI

Amount of Dry Matter Saved (kg)

Amount of Money Saved ($CAD)

Year

1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35

$0 $5 $10 $15 $20 $25 $30 $35

Amount of Dry Matter Saved
Amount of Money Saved

Interbull Annual Meeting - June 23 2019 - Cincinnati Ohio, USA - Houlan et al.
Conclusions

• Selecting on DMI or RFI will improve feed efficiency

• Improving feed efficiency does not show detrimental effects on other traits

• Increasing the weight on RFI could result in a similar response to selection as DMI
Acknowledgements