

Modifying MACE for genomic pre-selection

Pete Sullivan (Lactanet, Canada) Esa Mäntysaari (Luke, Finland) Gerben deJong (CRV, Netherlands) Haifa Benhajali (Interbull, Sweden)

Introduction Will MACE continue?

- Countries without genomics use MACE for selection
- Countries with genomics use MACE as input for SNP 2-step national GEBV systems ssEBV systems with MACE integration Intergenomics Brown Swiss and IG-HOL (2-step)
- Country correlations from MACE used in: GMACE, SNP-MACE (Interbull and Eurogenomics)

Why change MACE?

- Genomic pre-selection effects

 Mendelian Sampling of AI sires no longer follows the centralized normal distribution assumed in MACE

MS ~ N(0, $\frac{1}{2}\sigma_{g}^{2}$) X

 MACE should accommodate effects of genomic pre-selection (GPS) on MS distributions for recent AI bulls:

E(MS) > 0 $V(MS) < \frac{1}{2}\sigma_g^2$

 National systems can also accommodate GPS effects to minimize GPS bias in the national EBV input to MACE

CRV

Lactanet

Graphical view of GPS bias

Graphical view of GPS bias

BLUE *should be* expanded from RED but BLUE *is* expanded from RED+GREEN Negative tail too heavy *and* wrongly centered on 0

Current beliefs on GPS bias in EBV

- Data over-rides bad model assumptions on MS
 - Biases larger for culled than for selected bulls
 - Biases diminish with more daughters
- Biases similar within a selected group

CRV

- relatively small comparing bulls born in same year with similar Al usage (number daughters)
- · larger between birth years
- shows up as under-estimated genetic trend
- Impact of bias on MACE is small? ...increasing

Defining GPS bias

- GPS effects should be included as part of predicted genetic merits of genomically pre-selected bulls
- GPS effects are included in GEBV but not in EBV
- Missing GPS effects are referred to as GPS bias

GPS bias = **EBV** - **GEBV**

Detecting GPS bias in EBV

GPS

bias

- oGEBVr = genomic selection criterion, before AI
- GEBV = genomic estimate after AI
- EBV = *conventional* estimate *after AI*
- Since 2010

Intensity of GPS increased dramatically, for MS>0 Expect obvious increasing trends in %MS>0 Compare trends in %MS>0 for GEBV and EBV

%Positive MS: Conformation

bull+sire+dam proven in Canada

CRV

%Positive MS: Protein

bull proven in DFS

RDC bull mendelian percentage genotyped bulls with r²>0.79

GEBV – from full data EBV – from full data GEBVr - from reduced data EBVr – from reduced data

National EBV sent to Interbull

- Strong trends in %MS>0 from GPS effects are included in national GEBV
- The Trends in %MS>0 are reduced or eliminated in national EBV, because of GPS bias
- Interbull cannot compute MS as (AN Sire/2 Dam/2)
 Countries do not submit EBV of cows (for Dam/2)
- Interbull can only look at mPI as (AN Sire/2 MGS/4)

%Positive mPI: Conformation

bull+sire+dam proven in Canada

CRV

MSsi milk

Detecting GPS from mPI

- Trends in %mPI more difficult to work with than %MS
- mPI includes genetic trends of females (MGD)
- Current MACE model works more with mPI distributions than MS distributions

>MACE is Animal Model, but without using cow EBVs

 Can Interbull account for GPS effects in MACE with the data currently provided (only sire EBVs) ???

Interbull working groups

• GPS and Future MACE:

Pete Sullivan (Canada), Esa Mäntysaari (Finland), Gerben deJong (Netherlands) Haifa Benhajali (Sweden)

Develop and test international methods for genomics era

Trend Validation Tests

Paul VanRaden (USA), Pete Sullivan (Canada), Raphael Mrode (UK), Zengting Liu (Germany), Esa Mäntysaari (Finland), Valentina Palucci (Sweden)

Update current tests and expand beyond trend validation

- National EBV and MACE (ssEBV input to MACE?)
- National GEBV (2-step) and ssEBV (MACE as input?)
- International GMACE and SNP-MACE

Options for future MACE

- Using national data provided currently

Estimating GPS effects without genotypes

- 1. Modified relationship matrix (3rd parent)
- 2. Hyper-parameter for GPS effects on MS averages
- 3. Genetic groups known animals (+ phantom parents)
- 4. Data augmentation with pseudo records for culls
 - Fill missing gaps to make MS/mPI ~ Normal ???
- **Better underlying assumptions**
 - V(Animal PA GPS effect) < V(Animal PA)

CR

GPS effects can be in national EBV and MACE models

Groups for known animals

- Genetic groups (Qg) added to models in the 1970's e.g. AI stud or regions (as genetic pre-selection) effects Early-1980's, Kennedy and others showed: Groups improve accuracy only if group effects are large enough If all ancestors known (A complete) genetic groups are **not needed**. Late-1980's, Westell, Quaas simplified the application: Replace A⁻¹ with W to add unknown phantom parents groups **Became standard** approach for genetic groups in dairy evaluations But using W restricts grouping to unknown, missing pedigree
- GPS groups are known animals with known parents !!

INTEREUL

Groups for known animals

-national EBV models

 Methods are well-known (since 1970's), but not standard option in EBV software, except using W.

New programming required to fit genetic groups for both *Unknown Parents* AND additionally for GPS effects on *known animals* with known parents

- Unknown parent groups (W) account for PA-selection
- Known-animal GPS groups account for MS-selection
- Feasible to update national and MACE software
- Will require *custom programming*, especially for low variance, skewness, or multi-modal ~ MS / mPI

Holstein Conformation (Canada) (Genomic PreSelection Group Effects)

Holstein Conformation (Canada) (Genomic PreSelection Group Effects)

Holstein Conformation (Canada)

- After adding GPS group effects to the model
 - Bias in genetic trend partially removed (~40-50% smaller)
 - Expecting further improvement with reduced variance for selected MS (next step in this ongoing research)
- Consistent with simulation results (Fikse, 2014)
- GPS groups recommended by Patry and Ducrocq
- Obvious implementation, however, might give only partial benefits

Groups for known animals -international MACE model

- Success will be in the details ... some ideas to be tested
- Same Unknown Parent Groups in Deregression and MACE
 Across-country groupings
 Country of origin, Birth year, Selection path
- GPS groups only in the MACE model, not in Deregression
 Within-country groupings
 Country where used in AI, Birth year
 - >Need to consider single-country versus multi-country bulls

Options for future MACE

- With new data: Countries provide EBV + GEBV

If modeling GPS effects is not a good enough solution, another option is to use pre-corrected EBV input data

$$EBV^* = EBV + f(GEBV-EBV)$$

MACE* uses EBV*

$$MACE = f^{-1} (MACE^*)$$

Transformation function f() could be simple or complex

A simple **f()** example: add yearly averages of GEBV-EBV, correcting only for the GPS-biased genetic trend in EBV

Options for future MACE - Countries provide EBV <u>+ GEBV</u>

• The idea with transformation: use EBV* in *MACE* that are significantly *"less biased"* by GPS, while still excluding individual genotype contributions, to continue *MACE in SNP*

>i.e. Not double-counting genotype effects in national GEBV

- Variances and correlations could be estimated from the "less biased" EBV, with *modifications to allow* truncated MS data
- Accommodate variation between countries, in methods for GPS effects, because transformations are relatively smaller (appropriately) for countries with more advanced methods

Final Comments

- Not yet clear if *EBV of females* will be helpful or if EBV+*GEBV* will be required for future MACE
- Picking the best approaches objectively will require good validation testing and GPS simulation

