Consideration of heat stress in multiple lactation test— day models for dairy production traits

Y. Atagi¹, G. Morota², A. Onogi³, T. Osawa⁴, T. Yasumori⁵, K. Adachi⁵, S. Yamaguchi⁵, M. Aihara⁵, H. Goto⁵, K. Togashi⁵ and H. Iwata¹

1 The University of Tokyo, Japan

2 Virginia Polytechnic Institute and State University, USA

3 National Agriculture and Food Research Organization, Japan

4 National Livestock Breeding Centre, Japan

5 Livestock Improvement Association of Japan, Inc., Japan

Record processing

- Milk (M), Fat (F), Protein (P) (kg) and Somatic Cell Score (SCS): collected until May 2017 and calved after January 2000 in dairy farms, other than Hokkaido (an island in north of Japan)
- data editing criteria
 - Japanese National Genetic Evaluation
 - VCE: at least 10 cows within a farm test–day milking frequency (HTDT) and a farm calving year lactation (1st or 2nd + 3rd) (HYP) subclasses; then divided into 3 subsets randomly
- farms were linked to meteorological offices according to their locales for announcements regarding weather forcasts
- calculate Temperature-Humidity Index (THI) at meteorological offices

$$THI = (1.8 \times T_d + 32) - (0.55 - 0.0055 \times RH) \times (1.8 \times T_d - 26)$$

 T_d : dry bulb temperature (Celsius), RH: relative humidity (%)

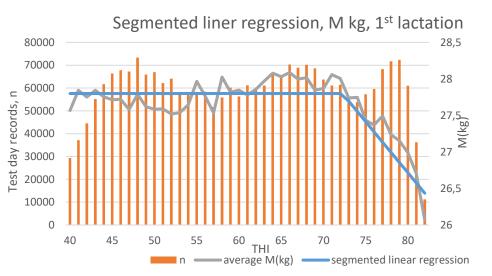
- each phenotype was linked to the average THI on 2 4 (M, F, P) / 1-12 (SCS) days before test day
- Heat stress: change of phenotypes at THI > THI_{threshold}

Difference with National model

$$y_{ijklmno} = HTDT_i + \mathbf{M'}_j \mathbf{w} + \mathbf{A}\mathbf{g'}_k \mathbf{w} + \mathbf{h}\mathbf{y}\mathbf{p'}_l \mathbf{v} + \mathbf{p}\mathbf{e'}_{mn}\mathbf{z} + \frac{\mathbf{p}eh_{mn} \cdot f(THI)}{\mathbf{p}eh_{mn} \cdot f(THI)} + \mathbf{u'}_{mn}\mathbf{z} + \frac{\mathbf{u}h_{mn} \cdot f(THI)}{\mathbf{u}h_{mn} \cdot f(THI)} + e_{ijklmno}$$

- $y_{ijklmno}$: M / F / P (kg), SCS, pre-adjusted for expected amount of decrease / increase corresponding to THI New!
- HTDT_i: fixed effect of herd*test day*milking frequency
- M_i : fixed regression coefficients of calving month
- Ag_k : fixed regression coefficients of calving age*lactation
- hyp_l : random regression coefficients of herd*calving year *lactation (1 or 2+3) effects
- pe_{mn} : random regression coefficients of general permanent environment (PE) effects * lactation
- ullet peh_{mn} : random linear regression coefficient of PE effect of heat tolerance * lactation
- $m{u}_{mn}$: random regression coefficients of general additive genetic (AG) effects * lactation
- uh_{mn} : random linear regression coefficient of AG effects of heat tolerance * lactation
- Not the case for F /P (kg) in the previous study (AAAP2018, Kuching, Malaysia)
- $e_{ijklmno}$: random residuals at days in milk (DIM: 6-35, 36-65, 66-95, 96-125, 126-215, 216-305) * 4186 at ion

•
$$\mathbf{w}' = [\phi_0(t) \quad \phi_1(t) \quad \phi_2(t) \quad \phi_3(t) \quad \phi_4(t) \quad e^{-0.05t}], \ \mathbf{v}' = [\phi_0(t) \quad \phi_1(t)], \ \mathbf{z}' = [\phi_0(t) \quad \phi_1(t) \quad \phi_2(t)]$$


- $\phi_p(t)$: Legendre polynomials, t = DIM
- $f(THI) = \begin{cases} 0 & \text{if } THI \leq THI_{threshold} \\ THI THI_{threshold} & \text{if } THI \geq THI_{threshold} \end{cases}$

THI_{thresholds} and change per 1 THI (from the previous study)

Traits	Lactation	Test day	THI _{threshold}			change / 1 THI		
		records, n	M	F	Р	M	F	Р
M, F, P	1 st	8,983,199	72.246	54.356	66.008	-8.19e-2	-3.27e-3	-3.54e-3
	2 nd	7,448,202	71.886	53.444	64.368	-1.72e-1	-4.25e-3	-5.01e-3
	3 rd	5,316,403	66.521	51.167	58.788	-1.59e-1	-5.01e-3	-4.62e-3
SCS	1 st	7,690,035		63.645			1.73e-2	
	2 nd	6,361,339		64.865			1.24e-2	
	3 rd	4,509,975		59.460			1.26e-2	

Segmented linear regression analysis (R segmented package)

$$y_i = c + e_i$$
; when $THI_i < THI_{threshold}$
 $y_i = a + b * THI_i + e_i$; when $THI_i > THI_{threshold}$

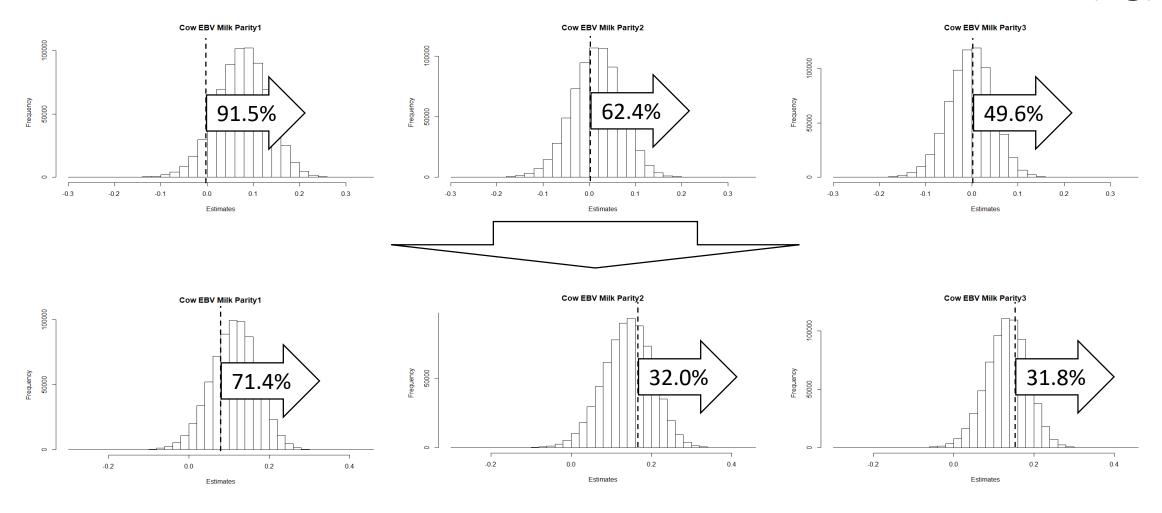
Summary of records

				ts				
	milk, fat, protein (kg)				SCS			
	Set1	Set2	Set3	Full	Set1	Set2	Set3	Full
test-day records	1,456,561	1,443,028	1,570,143	13,460,744	1,454,642	1,559,421	1,332,148	13,098,209
cows (female with records)	79,705	78,337	85,110	722,170	80,207	86,527	73,838	714,212
bulls (sire of cows)	4,621	4,621	4,697	7,311	4,594	4,746	4,495	7,283
other animals in a pedigree	112,989	105,790	109,366	663,971	107,365	113,377	106,814	660,627

Covariance components

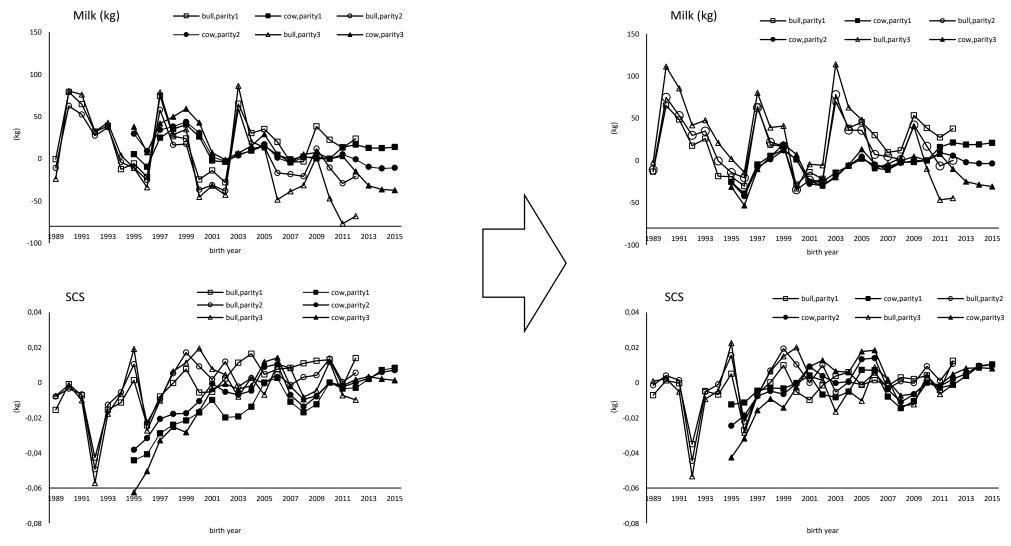
$$\operatorname{var}\begin{bmatrix} hypt \\ pet \\ ut \\ e \end{bmatrix} = \begin{bmatrix} I \otimes Q & 0 & 0 & 0 \\ 0 & I \otimes P & 0 & 0 \\ & & A \otimes U & 0 \\ sym. & 0 & R \end{bmatrix}$$

Estimated by gibbs3f90, BLUPF90 family

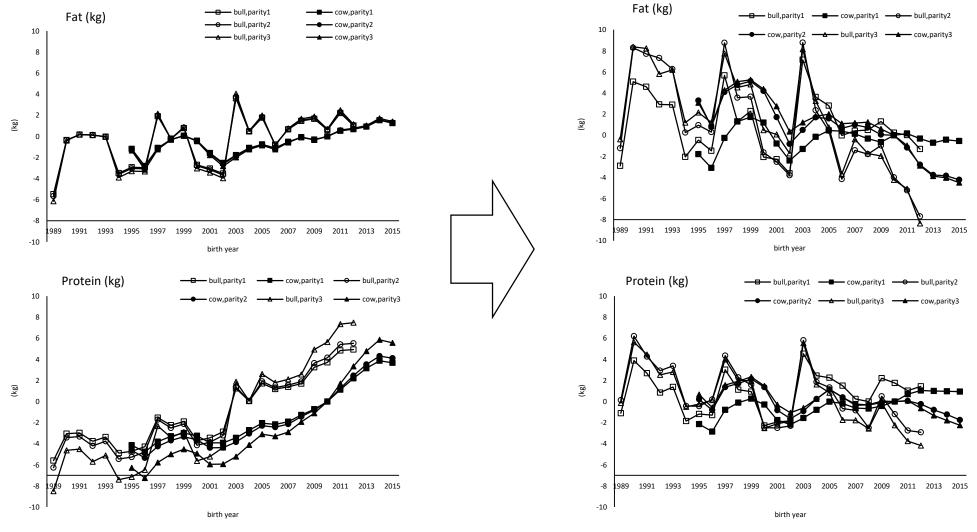

- $hypt' = [hyp'_1 \quad \dots \quad hyp'_l \quad \dots]$
- $pet' = [pe'_{11} \quad peh_{11} \quad pe'_{12} \quad peh_{12} \quad pe'_{13} \quad peh_{13} \quad \dots \quad pe'_{mn} \quad peh_{mn} \quad \dots]$
- $ut' = [u'_{11} \quad uh_{11} \quad u'_{12} \quad uh_{12} \quad u'_{13} \quad uh_{13} \quad \dots \quad u'_{mn} \quad uh_{mn} \quad \dots]$
- $e' = [e_1 \quad \cdots \quad e_{ijklmno} \quad \cdots]$
- *I* : identity matrix
- \mathbf{Q} : 2×2 matrix of (co)variances for hyp effects (2×2)
- *A*: numerator relationship matrix
- P, U: 12 (3 regression coefficients of Legendre polynomials for the general effects + 1 regression coefficient for HT) \times 3) \times 12 matrices of (co)variances for PE and AG effects
- ullet ${\it R}$: diagonal matrix with residual variance corresponding to DIM in nth lactation category

Heritabilities at THI=80

traits	lactation	to	tal	heat tolerance		
		previous study	present study	previous study	present study	
milk (kg)	1 st	0.2831±0.0063	0.2798±0.0062	0.0294±0.0014	0.0298±0.0013	
	2 nd	0.2427±0.0055	0.2435±0.0056	0.0167±0.0008	0.0220±0.0010	
	3 rd	0.2050±0.0070	0.2143±0.0071	0.0372±0.0019	0.0434±0.0021	
fat (kg)	1 st	0.2013±0.0047	0.2148±0.0050	0.0311±0.0015	0.0254±0.0015	
	2 nd	0.1962±0.0042	0.1941±0.0049	0.0191±0.0009	0.0445±0.0025	
	3 rd	0.1942±0.0048	0.2053±0.0060	0.0188±0.0009	0.0459±0.0024	
protein (kg)	1 st	0.2278±0.0055	0.2312±0.0077	0.0337±0.0014	0.0357±0.0050	
	2 nd	0.2081±0.0053	0.2078±0.0076	0.0249±0.0011	0.0403±0.0061	
	3 rd	0.2015±0.0060	0.2048±0.0085	0.0384±0.0016	0.0463±0.0063	
SCS	1 st	0.1281±0.0041	0.1277±0.0041	0.0088±0.0007	0.0088±0.0008	
	2 nd	0.2081±0.0053	0.1553±0.0041	0.0089±0.0005	0.0092±0.0006	
	3 rd	0.2015±0.0060	0.1878±0.0060	0.0180±0.0013	0.0194±0.0013	


• Generally, heritabilities of HT increased in the present study

Distributions of the estimates of AG effects of HT, milk(kg)


- above: the previous study, below: the present study
- better results in the present study, also for other traits

Genetic trends (lactation basis at THI = 80 continuously) 1

- Difficult to find trends, both of the previous (left) and the present (right) study
- Genetic base = cows born in 2010

Genetic trends (lactation basis at THI = 80 continuously) 2

- Trend changed, though common HT effects for all lactations in the previous study (left).
- Difficult to find trend in the present study (right)

Conclusions

- Given the fact that animals have never been selected for HT directly in Japan, the genetic trends in the present study were expected.
- More studies are required to further improve % of positive animals.
- The pre-adjustment provides better estimates than those derived from the previous study.

Acknowledgement

- JRA Livestock Promotion Funds for financial support.
- Holstein Cattle Association of Japan for pedigree records.
- Dr. Shogo Tsuruta, Yutaka Masuda (University of Georgia), and Dr. Koichi Hagiya (Obihiro University of Agriculture and Veterinary Medicine) for their valuable suggestions.