

Stable indirect predictions with a large number of genotyped animals

Daniela Lourenco

Andre Garcia, Yutaka Masuda, Shogo Tsuruta, Ignacy Misztal

Interbull 2019 – Cincinnati, OH

Ever-increasing number of genotypes

US Holsteins

Do we need to include all genotyped animals in the evaluations?

Indirect Predictions

• GBLUP

• ssGBLUP

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{W} \\ \mathbf{W}'\mathbf{X} & \mathbf{W}'\mathbf{W}+\mathbf{G}^{-1}\boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'\mathbf{y} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{W} \\ \mathbf{W}'\mathbf{X} & \mathbf{W}'\mathbf{W}+\mathbf{H}^{-1}\boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'\mathbf{y} \end{bmatrix}$$

SNP
effects
$$\hat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}^{-1} \hat{u}$$

VanRaden 2008 Stranden & Garrick 2009 Wang et al. 2012

 $\widehat{\boldsymbol{u}}_{ip} = \mathbf{Z}^* \widehat{\boldsymbol{a}}$

When to use indirect predictions

- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R²

- Interim evaluations
 - Between official runs
- Commercial products
 - e.g. GeneMax for non-registered animals

APY and Indirect Predictions

 $\widehat{\boldsymbol{a}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}^{-1} \widehat{\boldsymbol{u}}$

$$\mathbf{G}_{\mathrm{APY}}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{cc}^{-1}\mathbf{G}_{cn} \\ \mathbf{I} \end{bmatrix} \mathbf{M}_{nn}^{-1} \begin{bmatrix} -\mathbf{G}_{nc}\mathbf{G}_{cc}^{-1} & \mathbf{I} \end{bmatrix}$$

Misztal et al., 2014

$$\widehat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{\mathrm{APY}}^{-1} \widehat{u}$$

 $CORR(IP_1, IP_2) = 0.99$

Common practice in APY

- Select core animals
 - Randomly
 - Amount of information
- Keep the same core for several runs

What happens with IP when the number of genotyped animals increases under APY?

- American Angus Association
- BW, WW, PWG

Andre Garcia

Selecting 19k Core Animals

$$\mathbf{G}_{\mathrm{APY}}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{cc}^{-1}\mathbf{G}_{cn} \\ \mathbf{I} \end{bmatrix} \mathbf{M}_{nn}^{-1} \begin{bmatrix} -\mathbf{G}_{nc}\mathbf{G}_{cc}^{-1} & \mathbf{I} \end{bmatrix}$$

- Fixed core
 - Chosen randomly in 2013
- Updated core
 - Chosen randomly every year
- Extra scenarios
 - Oldest born up to 2010
 - Parents born up to 2013
 - Youngest born in 2015

GBLUP:
$$\hat{u}_{ip} = Z\hat{a}$$

ssGBLUP: $\hat{u}_{ip} = \overline{GEBV}_{eval} + \mathbf{Z}\hat{a}$

- GEBV (\widehat{u})
- SNP effects
 - $\widehat{\boldsymbol{a}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}_{\mathrm{APY}}^{-1} \widehat{\boldsymbol{u}}$
- IP for all animals
- CORR ($\widehat{oldsymbol{u}}$, $\widehat{oldsymbol{u}}_{ip}$)

Correlation between GEBV and IP

- SNP effects
 - $\widehat{\boldsymbol{a}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}_{\mathrm{APY}}^{-1} \widehat{\boldsymbol{u}}$

APY and Indirect Predictions

$$\mathbf{G}_{APY}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{cc}^{-1}\mathbf{G}_{cn} \end{bmatrix} \mathbf{M}_{nn}^{-1} \begin{bmatrix} -\mathbf{G}_{nc}\mathbf{G}_{cc}^{-1} & \mathbf{I} \end{bmatrix}$$

$$\widehat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{APY}^{-1} \widehat{u}$$

$$\widehat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{APY}^{-1} \widehat{u}$$

$$\widehat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{APY}^{-1} \widehat{u}$$

$$\widehat{a} = \lambda \mathbf{D} \mathbf{Z}' \mathbf{G}_{Core}^{-1} \widehat{u}_{Core}$$

$$\widehat{\mathbf{G}}_{a}^{-1} \operatorname{core}$$

$$\operatorname{CORR}(\mathbf{IP}_{1\nu}\mathbf{IP}_{2}) = 0.99$$

What happens with IP when the number of genotyped animals increases under APY and SNP effects are computed based only on CORE animals?

Correlation between GEBV and IP

• SNP effects

 $\widehat{\boldsymbol{a}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}_{\text{Core}}^{-1} \widehat{\boldsymbol{u}}_{\text{Core}}$

Reverse Engineering

- Only a small portion of the data
 - Approximate SNP effects
 - Predictions for genotyped animals

What happens with predictions under reverse engineering?

Correlation between GEBV and Predictions

• Data up to 2015

Final Remarks

- If all genotyped animals are used to compute SNP effects
 - Indirect Predictions are robust
 - Independent of core choice
- If only core animals are used
 - Robust Indirect Predictions with updated core
 - Core should reflect the dimensionality of **G** (98% 99%)
- If only a small portion of the data is available
 - Predictions are less accurate

Acknowledgements

Steve Miller

