Hybrid one-step genomic evaluation system in Italian Simmental

L. Degano¹, G. Jansen², D. Vicario¹, R. Finocchiaro³, A. Rossoni⁴

^{1*}ANAPRI: Via Ippolito Nievo 19, 33100 Udine (UD)-Italy; tel. +39 043222411; email: vicario@anapri.it

^{2*} Dekoppel Consulting, Casale Rovera 10, Chiaverano(TO), Italy

^{3*}ANAFI: Via Bergamo 292, 26100 Cremona (CR)-Italy

^{4*}ANARB: 204, Localita' Ferlina, 37012 Bussolengo (VR)-Italy

Interbull Meeting 2016, Puerto Varas-Chile, 26th October

INTRODUCTION

Introduction

One-step project: is a collaborative project of ANAFI, ANAPRI and ANARB (2014)

Aims of Project: develop a joint genetic-genomic evaluations tool for bulls, cows and young animals, for all traits.

Issue: different kind of traits, statistical models, dimension of population...

Consistency of the data-sets used for genetic evaluation of the production traits

	Italian Simmetal	Italian Brown	Italian Holstein
N° Test day	5,300,000	22,000,000	75,000,000
N° Pedigrees	600,000	3,800,000	17,400,000
N° Genotype	4,200	21,000	175,000
TD Model	Repeat. Tdm	Repeat. Tdm	R.R. Tdm
Genomic evaluation before project	PC-reduced SNP Blup	Intergenomics	GS3-SNPBLUP with poligenic effect

Onestep Project Wiki

🛛 🧷 Modifica 🚖 Osserva 🕐 Rinomina 🛅 Elimina 🐗

The Onestep project is a collaborative project of Anarb, Anafi and Anapri whose objective is to develop a system of joint genetic-genomic evaluations for bulls, co young animals, for all traits, with the eventual aim of replacing all current conventional and genomic evaluations in publications, databases and selection tools.

Meetings: minutes and supporting docs for meetings

SoftwareBlupf90 | SoftwareSnpblup and DesignNotes: system design and software usage notes

FileFormats: file formats for onestep inputs/outputs InputFileNotes: extra notes on preparation of input data files DataChecks: initial data checks performed by OSM software Clones | ParentageErrors: handling of clones and parentage errors

Deregression: documentation for deregression method

InternalValidation: notes on internal validation InterbullValidation: Interbull validation with GEBVtest software

TotalMeritIndices: proposal to compute approximate TMIs (see also AnimalStatus)

BaselineTests: initial testing with first datasets

LitReview: literature review about genomic evaluation and especially the so-called single-step or EvaluationSystems: links to country docs about national evaluation systems

Forum: interesting posts from original forum

Nuovo file

INTERACTIVE PROJECT DEVELOPING ACROSS R&D STAFF OF EACH BREED ASSOCIATION THROUGH A WEB-BASED SOFTWARE "COLLABORATION PLATFORM (http://redmine.anafi.it/pr ojects/one-step)

The pipeline

Data

Data:

- 286,311 EBVs for productive traits (national EBVs for cows and NI bulls, national and MACE EBVs for AI bulls)
- ✓ 212,223 EBVs for SCS (100±12; cows and NI bulls national EBVs, AI bulls national and MACE EBVs)
- ✓ 143,652 EBVs for muscling and udder (100±12; EBVs from the international join evaluation that involve Simmental populations of DE, AT, CR, IT)

Pedigree: 581,521 Animals

Genotypes:

4,226 genotypes (3,083 M; 1,143 F); mostly 54k, others ranging from GGP_LD to IlluminaHD . Genotypes from all chips have been imputed to a standard set of 40,200 selected SNPs (Pedimpute developed by E.Nicolazzi & G.Jansen, 2013).

Source	Males	Females
International exchanges	1079	
Research projects	899	963
Routine breeding program	1105	180

Methodology

- EVBs DEREGRESSION
- DGV / GEBV ESTIMATION
- VALIDATION
- RELIABILITY COMPUTATION

Deregression

Deregression to achieve EDPs has been carried out according the underlying mixed model equations can be represented as:

 $(Z'DZ + A^{-1}k) \{EBVi\} = 2 Z'Dy$

Where:

D is a diagonal matrix of unknown EDC (Effective Daughter Contribution) A is the traditional relationship matrix

k = (4-h2)/h2 (variance ratio)

y is a vector of unkown EQUIVALENT DAUGHTER PERFORMANCE (EDP) values

Z is an incidence matrix relating animals to EDP.

Deregression (3 steps)

PRUNING on EBVS & PEDIGREES (over 50% reduction) to reduce computing resourses

(Z'DZ + A⁻¹k){EBVi} = 2 Z'Dy

1. only domestic cow and bull EBV and REL were considered

2. Including MACE EBV and REL (by replacing domestic bulls EDVs and any other foreign bull in pedigree)

3. Cow EDP adjustment for MS variance

Re-computing EBVs and REL for all animals (BLUP AM solver) (Parent Averages as by-product from this kind of MACE EBVs blending)

Ubro Genealogico Pezzata Rossa Italiana ANAPRI-Udine

DGV /GEBV estimation

ONE-STEP genomic evaluation

Single-step GBLUP evaluations were computed using simple animal model with mean as only fixed effect, with matrix A⁻¹ replaced by matrix H⁻¹ as in (Legarra et al., 2014) with a polygenic component incorporated through $G_w = 0.9 G + 0.1 A_{22}$

The BLUPF90 suite of software of I. Misztal and collaborators was used to form the genomic relationship matrix with default scaling parameters and to solve the MME (http://nce.ads.uga.edu/wiki) Via Ippolito Nievo 19, 33100 Udine (UD) - Italy

SNPBLUP genomic evaluation

For the purposes of comparison, DGV were also estimated with a SNPBLUP model followed by simple blending of the PA from the final deregression step, according to relative EDC, to obtain GEBV

$$DGV = \mu + \sum z_i a_j$$

Own developed BLUP solver has been used for computing SNP solutions

Validation

Validation

Performed by following the guidelines of the Interbull GEBV test.

Reducing dataset of phenotipic records 4 years back:

- PRODUCTION /SCS -> domestic EBVs from reduced dataset were re-computed removing last 4 years of TD records.
- CONFORMATION -> the last four birth years of current cow and bull EBVs were removed and for all traits the last four birth years of current MACE EBV were removed.

RE-RUN OF DEREGRESSION ON REDUCED DATASET

Approximated reliability of GEBV (Van Raden et al. 2009)

1. $EDP_{full} = b * GEBV_{rd} (R^2 gebv)$

$$2. \quad EDP_{full} = b * PA_{rd} (R^2 PA)$$

 $(R^2 gebv) - (R^2 PA) =$ GEBV reliability gain due to DGV

.... <u>UNDERESTIMATED</u> because of loss of information by reducing dataset for validation, especially in small reference populations

RELIABILITY computing

Approximation of one-step GEBV reliabilities

A) Validation study

- 1. observed REL_GEBV: R² (EDP_f / GEBV_r) / REL_EDP_f
- 2. projection from reduced data to full data, based on increase in size of calibration (sum(REL_EDP))
- 3. add difference in published and observed REL_PA
- 4. yields average REL_GEBV for young bulls and extra EDC over PA
- **B)** Published individual GEBV_REL
- EDC from conventional REL + extra EDC from genotype
- small increase for non-genotyped relatives too

COWS genotypes or NOT in Calibration

GEBVs estimation:

- ✓ GEBVs were obtained using the procedure developed by the consortium.
- ✓ Four different scenarios have been considered.

Scenario	Model	Reference population
Scenario 1	SNPBLUP	Only Bulls
Scenario 2	SNPBLUP	Bulls & Cows
Scenario 3	ONE-STEP	Only Bulls
Scenario 4	ONE-STEP	Bulls & Cows

RESULTS

Descriptive statistics of EBVs

	N° records	Mean±SD	Min	Мах
Milk kg	286,311	-447.7±557.4	-2,170	2,248
Fat kg	286,311	-18.1±22.1	-70	69
Protein kg	286,311	-16.1±18.4	-69.3	66.6
SCS	212,223	95.8±10.0	50	148
Muscling	143,652	101.6±9.6	50	149
Udder	143,652	95.2±8.9	50	138

Internal Validation report

🖹 C:\	Users\vicario\Downlo	oads\valid	late_ONEMF.log	g - Notepad	++										— f	J)	×
File	Modifica Cerca V	isualizza	Formato Li	nguaggio	Configuraz	tione Macro	Esegui Plu	igin Fines	stra ?								Х
	🚽 🗄 🖷 📑 📭	لا 🖨	h 🜔 🔁	c # '	bg 👒 🤇	3 🖪 🖼	I 🗐	ş 💹 🔊) 💌 🔳 🕨 📗	🗄 🥸 🍃	a 💝						
📙 val	idate_ONEMM.log	validate	SNPMM.log	validate_0	NEMF.log	📙 validate_SN	PMF.log 📙	correlazioni e	e medie.lst								
1	Internal vali	idation	n for SIM 1	1611gj1	(run	on 2016-0c	t-11 11:2	5:12)									^
2	- <u>onestep</u> bl	lending	g (with pre	eGSf90 a	nd blup	£90)											
3	- EDP/EDC fo	or vali	idation fro	om full	data us	ing bulls-	only <u>dere</u>	gressio	n,								
4							-										
5	Dereg options	s: edd	c_delta=3.0) eap_ae	Ita=3.5	ped_upg=	frue cow	_rescale	e=2								
2	Solver option	ns: m	inmar=0.01	tau=1.0	omega=	I.U alpha=	v.y beta=	U.I	-N filo200-V								
	Total genoty	nee 41	. weighted	I-IIUC	rescare	-raise mi		cypez.	X-N IIIE300-I								
9	Iotal genoty	,	20,														
10																	
11		1	N			Rel			GEBV	R2	R2						
12	Trait	Train	Test Year	h2	EDP	PA GEBV GA	IN EDCG	EDCGd	ab	GEBV	PA						
13	<u>mil</u> latte	2179	119 2007	0.193	85.2 38	.3 47.6 9	.2 17.9	5.6	-176.68 0.592	0.136	0.082						
14	fat <u>kggras</u>	2182	119 2007	0.129	83.3 38	.0 49.4 11	.4 29.3	10.9	-9.55 0.719	0.214	0.137						
15	pro kaprot	2179	119 2007	0.170	84.0 37	.9 50.9 12	.9 23.3	9.6	-8.26 0.681	0.197	0.107						
16	scs cell	2265	119 2007	0.120	79.9 36	.5 48.5 12	.0 30.4	11.8	-0.48 1.001	0.381	0.327						
17	map milga	1169	77 2007	0.152	52.5 27	.7 27.6 -0	.2 9.6	-0.1	49.74 0.527	0.079	0.074						
18	tag <u>taglia</u>	1934	95 2007	0.439	87.1 40	.5 48.9 8	.4 7.8	2.2	21.72 0.767	0.401	0.342						
19	mus muscol	1926	95 2007	0.214	75.4 37	.5 68.7 31	.2 38.9	28.3	6.68 0.931	0.516	0.440						
20	ofl arti	1907	95 2007	0.108	60.6 35	.2 42.6 7	.5 26.8	7.2	-30.84 1.314	0.255	0.311						
21	oca mammel	1929	95 2007	0.235	77.0 37	.8 64.6 26	.8 29.3	19.5	-19.72 1.203	0.494	0.510						
22	dpd tpt	537	117 2007	0.049	26.5 14	.9 1.0 -1	3.8 0.	9 -13.3	2 94.93 0.048	0.000	0.072						
23	tap tagpt	741	334 2014	0.250	23.6 6	.9 9.0 2	.1 1.5	0.4	0.13 0.988	0.012	0.012						
24	mup muspt	751	359 2014	0.380	55.6 9 20 4 7	.7 7.4 -2	.3 0.5	-0.2	96.43 U.U3I	0.010	0.230						
20	ing import	745	342 2014	0.230	20.1 /	6 19 5 11	.0 3.0 8 2.0	2.3	-13.13 1.124	0.045	0.047						
27						.0 19.3 11					0.012						
28	All Average	1514	174 2009	0.000	60.6 26	.9 36.0 9	.1 15.9	6.2	-2.58 0.813	0.199	0.195						
29	All Median	1916	119 2007	0.000	68.0 35	.8 45.1 9	.3 13.8	4.0	-4.37 0.849	0.167	0.122						
30																	
31																	
32			Mean			SD		r(PA,	PA	R2	R2						
33	Trait	EDI	P PA	GEBV	ED	P PA	GEBV	GEBV)	a b	PA	PA+GEBV						
34	mil latta	05 /	FE 384 02	387 33	540 5	4 225 20	286 60	0 774	_171 35 0 550	0 082	0 136						-
Norma	l text file								length: 4174 lin	ies : 51	Ln : 3	8 Col:99	Sel:0 0	UNIX	UTF-8 w/o BOM	INS	

Via Ippolito Nievo 19, 33100 Udine (UD) - Italy; tel. +39 0432 22411; email: anapri@anapri.it

Ross.

Internal validation: SNPBLUP MODEL

	Reference population: bulls; Model: SNPBLUP													
	N° Ai	nimals	0/ h2	R	eliability	EDP/	GEBV	EDP/PA						
	Reference Validation		70 f1-	PA	GEBV	Gain	b	$\% R^2$	b	% R ²				
Milk kg	1,644	121	19.3	38.3	46.7	8.4	0.67	9.1	0.48	6.0				
Fat kg	1,646 121		12.9	38.0	49.3	11.3	0.83	16.8	0.64	10.9				
Protein kg	1,645	121	17.0	37.9	51.9	14.0	0.86	14.8	0.57	8.0				
SCS	1,700	120	12.0	36.4	39.2	2.8	1.10	30.0	1.07	29.5				
Muscling	1,520	95	21.4	37.2	54.0	16.8	0.79	36.8	0.86	39.5				
Udder	1,523	94	23.5	37.6	65.4	27.8	1.15	42.5	1.45	49.0				

	Reference population: bulls and cows; Model: SNPBLUP												
	N° An	imals	0/ h2	R	eliability	%	EDP/	GEBV	EDF	P/PA			
	Reference Validation		70 II ⁻	PA	GEBV	Gain	b	%R ²	b	%R ²			
Milk kg	2,170	121	19.3	38.3	48.8	10.5	0.64	8.7	0.48	6.0			
Fat kg	2,172	121	12.9	38.0	50.9	12.9	0.82	16.4	0.64	10.9			
Protein kg	2,171	121	17.0	37.9	52.2	14.3	0.81	13.6	0.57	8.0			
SCS	2,253	120	12.0	36.4	40.9	4.5	1.17	30.5	1.07	29.5			
Muscling	1,929	95	21.4	37.2	54.4	17.2	0.80	36.7	0.86	39.5			
Udder	1,932	94	23.5	37.6	65.5	27.9	1.19	42.7	1.45	49.0			

Internal validation: ONESTEP MODEL

	Reference population: bulls; Model: ONE-STEP												
	N° Ar	nimals	0/h2	%	Reliabili	ity	EDP/	GEBV	P/PA				
	Reference	Validation	7011-	PA	GEBV	Gain	b	%R ²	b	%R ²			
Milk kg	1,655	116	19.3	38.3	44.1	5.8	0.67	15.6	0.64	11.0			
Fat kg	1,658	116	12.9	38.0	45.5	7.5	0.85	24.9	0.89	19.0			
Protein kg	1,655	116	17.0	37.9	44.9	7.0	0.77	23.1	0.82	17.5			
SCS	1,714	116	12.0	36.5	58.2	21.7	1.20	46.5	1.24	37.0			
Muscling	1,518	92	21.4	37.5	73.0	35.5	1.11	55.0	1.03	43.8			
Udder	1,521	92	23.5	37.8	60.0	22.2	1.14	46.0	1.37	52.0			

	Reference population: bulls and cows; Model: ONE-STEP													
	N° An	imals	0/h2	%	Reliabili	ty	EDP/GE		EDP/PA					
	Reference Validation		7011-	PA	GEBV	Gain	b	% R ²	b	% R ²				
Milk kg	2,179	19.3	38.3	46.1	7.8	0.62	15.4	0.48	6.0					
Fat kg	2,182 116		12.9	38.0	51.7	13.7	0.79	26.4	0.64	10.9				
Protein kg	2,179	116	17.0	37.9	51.9	14.0	0.77	25.6	0.57	8.0				
SCS	2,265	116	12.0	36.5	60.5	24.0	1.22	48.0	1.07	29.5				
Muscling	1,926	92	21.4	37.5	74.5	37.0	1.12	56.1	0.86	39.5				
Udder	1,929	92	23.5	37.8	70.9	33.1	1.26	54.4	1.45	49.0				

Descriptive statistics of GEBV

(970 young genotyped animals without EDP)

Scenario	Model	Ref. pop.	Milk kg	Fat kg	Protein kg	SCS	Muscling	Udder
1	SNPBLUP	Bulls	340.1± 222.5	12.0± 9.0	11.7± 7.4	102.5± 6.4	98.3± 7.8	107.7± 6.8
2	SNPBLUP	BullS & C.	355.3± 224.6	12.6± 8.8	12.5± 7.5	102.6± 6.1	98.5± 7.6	107.4± 6.4
3	ONESTEP	Bulls	439.4± 332.4	15.2± 12.8	15.2± 10.5	102.9± 8.2	99.0± 8.1	106.1± 7.2
4	ONESTEP	Bulls & C.	430.1± 337.1	15.0± 13.0	14.8± 10.6	102.8± 8.4	99.0± 8.2	106.0± 7.2

Correlation GEBV: protein Kg, SCS

(970 young genotyped animals without EDP)

Protein kg	Model	Ref. popul.	Scen. 1	Scen. 2	Scen. 3	Scen. 4
Scenario 1	SNPBLUP	Bulls	1	0.99	0.83	0.81
Scenario 2	SNPBLUP	Bulls & C.		1	0.82	0.81
Scenario 3	ONESTEP	Bulls			1	0.96
Scenario 4	ONESTEP	Bulls & C.				1

SCS	Model	Ref. popul.	Scen. 1	Scen. 2	Scen. 3	Scen. 4
Scenario 1	SNPBLUP	Bulls	1	(0.99)	(0.90)	(0.87)
Scenario 2	SNPBLUP	Bulls & C.			0.89	0.88
Scenario 3	ONESTEP	Bulls			1	0.97
Scenario 4	ONESTEP	Bulls & C.				

Correlation GEBV: muscling, udder

(970 young genotyped animals without EDP)

Muscling	Model	Ref. popul.	Scen. 1	Scen. 2	Scen. 3	Scen. 4
Scenario 1	SNPBLUP	Bulls	1	0.99	0.91	0.91
Scenario 2	SNPBLUP	Bulls & C.		1	0.90	0.89
Scenario 3	GBLUP	Bulls			1	0.96
Scenario 4	GBLUP	Bulls & C.				1

Udder	Model	Ref. popul.	Scen. 1	Scen. 2	Scen. 3	Scen_4
Scenario 1	SNPBLUP	Bulls	1	0.99	(0.89)	(0.88)
Scenario 2	SNPBLUP	Bulls & C.		1	0.87	0.86
Scenario 3	GBLUP	Bulls			1	0.99
Scenario 4	GBLUP	Bulls & C.				1

CONCLUSIONS

Conclusions-1

- ✓ An stream-lined, flexible and user-friendly pipeline for computing GEBVs for different breeds and different traits has been developed for the main dairy breeds in Italy. This was feasible only by using a hybrid one-step approach based on deregressed EBV instead of rough phenotypes.
- ✓ By doing that, blending MACE ebvs into domestic evaluation together with cows in an efficient way, allows inclusion in calibration of foreign bulls with no daughters in such population as well as cows.
- ✓ Considering that in the future the estimation of GEBVs will be more frequent (weekly ?), this easy friendly pipeline improves the routine of GE.
- ✓ Italian Simmental has implemented officially this procedure (SNPBLUP) for genomic evaluation recently validated by GEBV test at ITB.

Conclusions-2

- ✓ In medium size populations as the Italian Simmental, with a low n° of genotyped bulls and without a borderless GE, inclusion of genotyped cows in one-step GE is expected to give substantial advantage in terms of reliability gain as the n° of genotyped cows increases.
- ✓ GEBV ITB test validation has been also passed. Obtained results in terms of R² and b-coefficient are not unfortunely enough meaningful because small size of validation bulls group. Further investigations are needed to explain these values.
- Moving from a SNPBLUP model to a ONESTEP, makes also sense in this case, giving an advantage especially in terms of GEBVs variability, much more comparable to conventional EBVs . Shortly, it is going to switch to ONESTEP officially, already internal validated.
- Next advances of this tool are going to be extending application possibly to other italian breeds and to new traits i.e. functional traits, beef training animal behavious, 93 foo Udine (UD) - Italy; tel. +39 0432 22411; email: anapri@anapri.it

Thank you for your attention

Acknowledgements

ASR (Germany), AGOF (Austria), CESTR (Cech Republic), SWISS HERDBOOK (Switzerland) for exchanging bulls' genotypes.

UGA (USA) i.e. Ignacy Misztal research group for providing BLUP f90 suite programs.

RELIABILITY computing

REL_DGV = w *[T*h2 / (T*h2 + Me)] (E.Mantysaari, 2014, Berlin ITB meeting)

where

REL_DGV = avg. squared accuracy of DGV in young animals without phenotypes w = fraction of genetic variance that can be explained by the marker panel T = number of animals in the training (or reference) set h2 = squared accuracy of "phenotypes" on training animals Me = effective number of chromosome segments segregating in the population (=6,000)

By applying this formula either in FULL and REDUCED datasets we extrapolated the validation reliability as a function of size of training population and average REL_EDP in the reduced validation data (R) and in the full data (F) used to calculate routine genomic evaluations.

In practice, T*h² is the sum of REL_EDP of training animals.

Let's say SumRel{R|F}

RELIABILITY computing

SumRel can be interpreted roughly as the effective size of the training set if all animals had EDP accuracy = 1,

For example, SumRel = 2000 could be obtained :

- 2500 bulls with REL_EDP=0.8 (>100 daus. , h²=0.25)
- 3000 bulls with REL_EDP=0.67
- 8000 cows with REL_EDP=0.25

Therefore, theoretical reliabilities of DGV can be calculated as follows and converted in EDCs:

reldDGV_R = SumRelR / (SumRelR + Me) → edcdR = k * reldR / (reldR - 1) reldDGV_F = SumRelF / (SumRelF + Me) → edcdF = k * reldF / (reldF - 1)

[edcdF – edcdR]

can be added to EDC from the empirical REL_DGV in the internal validation in order to extrapolate the genomic EDCs and RELs to values expected from the full data.