

Breeding for resistance against Paratuberculosis: Genetic relation between antibody response and faecal shedding of MAP in dairy cattle

L.C.M. de Haer, M.F. Weber, G. de Jong

CRV and GD Animal Health; The Netherlands

What is Paratuberculosis?

Paratuberculosis is a chronic intestinal infection of ruminants caused by Mycobacterium avium ssp. Paratuberculosis (MAP).

Infections will develop slowly into:

- chronic intractable diarrhea
- weight loss
- production losses
- low birth weight of calves
- ultimately death since no treatment is available

Economical importance

In The Netherlands in 2008:

47% of farms had at least one positive animal 2.4% of all animals was positive

Economical loss:

770,- euro/year per herd (50 animals) with infected cows

For every animal that develops clinical signs

- there will be 7 to 10 animals excreting
- there will be a further 7 to 10 infected, but not yet excreting (possibly excreting in the future)

Is breeding against Paratbc possible?

- Goal is reduction of faecal shedding of MAP
- Tool is antibody response in milk
- -> Are genetic variations of antibody levels and faecal excretion present?
- -> Is a lower antibody level in milk related to less faecal shedding?

Data

Causative agent of paratuberculosis:

Mycobacterium avium ssp. Paratuberculosis (MAP)

Two data sets:

- 1) Individual milk samples tested by Elisa for antibodies against MAP (trait=PA1)
- 2) Individual faecal samples tested for MAP bacteria (trait=PA2)

Method

Estimation of genetic parameters for PA1 and PA2

 Estimation of genetic correlation between breeding values for PA1 and PA2

Results: genetic effects

	PA1	PA2
σ_{g}^{2}	0.004	0.005
σ^2_g σ^2_{perm}	0.033	0.021
σ_{p}^{2}	0.081	0.081
repeatability	0.42 (0.003)	0.28 (0.006)
h ²	0.05 (0.003)	0.06 (0.008)

Heritability and genetic variation indicate possibilities for selection.

Genetic correlation

- Genetic correlation between breeding values estimated with milk (PA1) and faecal (PA2) analyses
- Genetic correlation was estimated, accounting for differences in repeatability of breeding values (MACE)
- Sires have at least 15 daughters

Genetic correlation PA1-PA2: 0.81

Implications

- Genetic standard deviation for ELISA test (antibody levels): 0.063
- Increase in breeding value means decrease in antibody levels
- Using a bull with 1 genetic standard deviation higher breeding value: 2.8% less daughters tested positive

