Extension of single-step ssGBLUP to many genotyped individuals

Ignacy Misztal University of Georgia

Genomic selection and single-step

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

lar et al., 2010

Aguilar et al., 2010 Christensen and Lund, 2010

- Simplicity
 - No DYD or DP
 - No index
 - No complexity
- Accuracy
 - Avoids double counting
 - Avoids fixed index
 - Accounts for preselection bias

Current implementation of SS

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- G and A₂₂ created explicitly
- Quadratic memory and cubic computations
- Cost per 100k genotypes 1.5 hr (Aguilar et al.,2014)

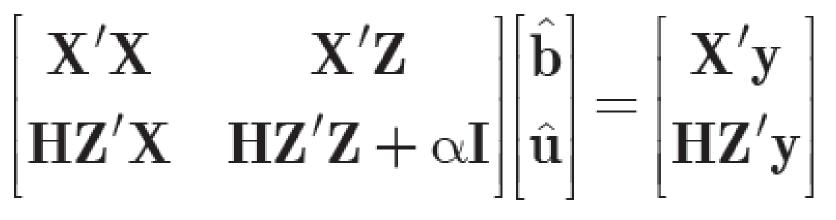
Number of genotypes and impending problem

- > 2 M for Holsteins
- > 400k for Angus

Genomic pre-selection issue (Patry and Ducrocq, 2011; VanRaden et al., 2013)

- BLUP increasingly biased
- Need all data on preselection included

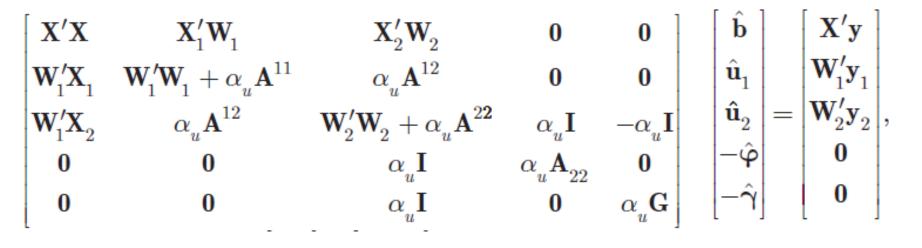
Unsymmetric equations



Misztal et al., 2009

No convergence without good preconditioner No convergence with large H or A

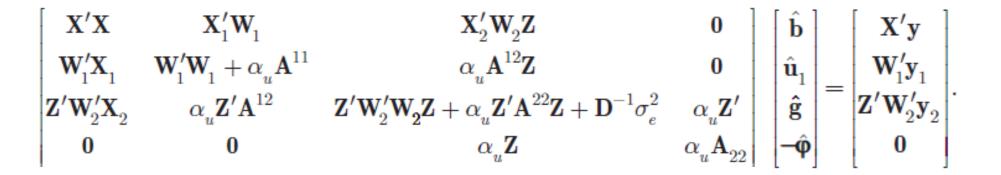
No G or A₂₂ inverse model



Legarra and Ducrocq (2011)

Slow convergence with few genotypes Divergence with many genotypes

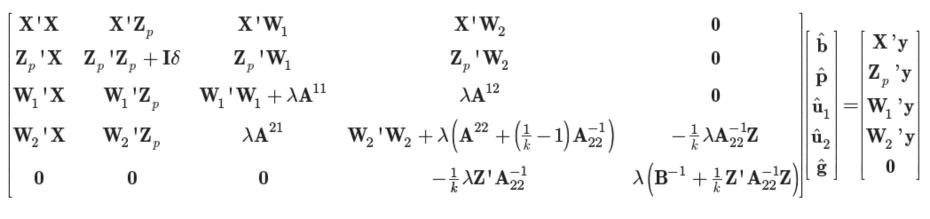
SNP model for genotyped animals



Legarra and Ducrocq, 2011

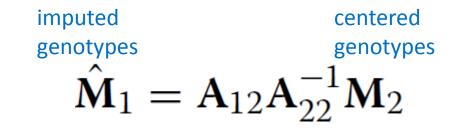
No successful programming

SNP model for genotyped animals



Liu et al, 2014

SNP effects for all animals (Fernando et al., 2014)



$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1^* \\ \mathbf{X}_2^* \end{bmatrix} \boldsymbol{\beta}^* + \begin{bmatrix} \mathbf{Z}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{M}}_1 \boldsymbol{\alpha} + \boldsymbol{\epsilon} \\ \mathbf{M}_2 \boldsymbol{\alpha} \end{bmatrix} + \mathbf{e}$$

Cost of imputation Requires new type of programming Extension to complex models unclear

Can regular ssGBLUP be made more efficient?

Scaling up A₂₂⁻¹

$$A_{22}^{-1} = A^{22} - A^{21} (A^{22})^{-1} A^{12}$$

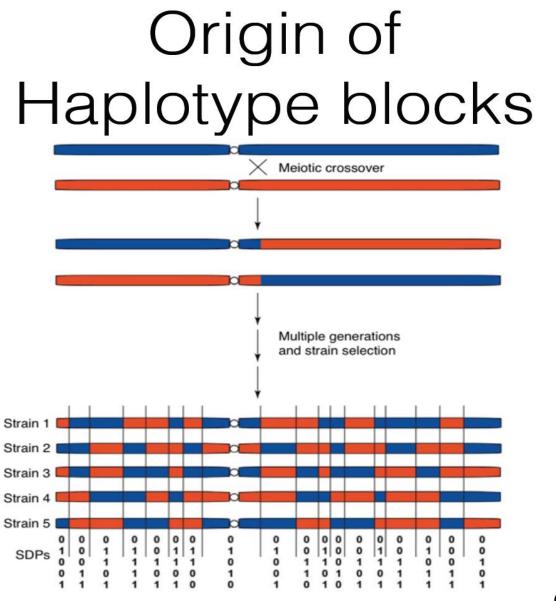
- A_{22}^{-1} dense (Faux et al., 2014)
- For PCG iteration (Stranden et al., 2014)

$$A_{22}^{-1}q = A^{22}q - \left\{A^{21}\left[\left(A^{22}\right)^{-1}\left(A^{12}q\right)\right]\right\}$$

• Seconds for 500k animals with good programming (Masuda et al., 2017)

Is dimensionality of genomic information limited?

- Regular G not positive definite past ~5k
 Blending with A (VanRaden, 2008)
- Dimensionality of SNP BLUP small (Maciotta et al., 2013)
- Success of imputation
- Manhattan plots noisy until averaged by 300k-10Mb (depending on species)



Cuppen, 2005

Heterogenetic and homogenic tracts in genome (Stam, 1980)

.....

E(#tracts)=4NeL (Stam, 1980) Ne – effective population size L –length of genome in Morgans

> Holsteins: Ne ≈100 L=30 Me=12,000

Inversion via SVD/eigenvalue decomposition

Assume 1 million animals genotyped with 60k chip

- G = ZZ' = UDU' Eigenvalue decomposition (1M x 1M)
- $G^- = UD^-U'$ Generalized inverse (1M x 1M)
- $Z = USV = UD^{0.5}V$ SVD decomposition (1M x 60k) 10h for 720k animals (Masuda, 2017)

t - index for non-negligible eigenvalues, say 10k $\mathbf{G}^- = \mathbf{U}_t \ \mathbf{D}_t^{-1} \mathbf{U}_t' = \mathbf{U}_t \ \mathbf{S}_t^{-1} \mathbf{S}_t^{-1} \mathbf{U}_t' = \mathbf{U}_* \ \mathbf{U}_*$

For PCG iteration $\mathbf{G}^{-1}\mathbf{q} = \mathbf{U}_* (\mathbf{U}_* \mathbf{q})$ - only 1 M x 10k elements

Inverse by Woodbury formula

$$G = ZZ' + I\varepsilon,$$

$$G^{-1} = \frac{1}{\varepsilon}I - \frac{1}{\varepsilon}Z(\frac{1}{\varepsilon}Z'Z + I)^{-1}Z'\frac{1}{\varepsilon}$$

For PCG iteration:

Woodbury formula Z'Z 60k x 60k

Mantysaari et al., 2017

$$\mathbf{G}^{-1}\mathbf{q} = \frac{1}{\varepsilon} \{\mathbf{I} - \mathbf{Z}(\mathbf{U}\mathbf{D}\mathbf{U}')^{-1}\mathbf{Z}'\}\mathbf{q} = \frac{1}{\varepsilon} \{\mathbf{I} - \mathbf{S}\mathbf{S}'\}\mathbf{q}$$
$$\mathbf{S} = \mathbf{Z}\mathbf{U}'\mathbf{D}^{-1/2}$$
With reduced rank $\mathbf{S} = \mathbf{Z}\mathbf{U}_t'(\mathbf{D}_t)^{-\frac{1}{2}}$ (1M x 10k)

Ostersen et al., 2017

If G has limited dimensionality, can G⁻¹ be sparse like A⁻¹?

Use of a la Henderson's rules?

J. Dairy Sci. 95:6093–6102 http://dx.doi.org/10.3168/jds.2011-5249 © American Dairy Science Association[®], 2012.

A recursive algorithm for decomposition and creation of the inverse of the genomic relationship matrix

P. Faux,*1 N. Gengler,* and I. Misztal†

*Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium †Department of Animal and Dairy Science, University of Georgia, Athens 30602

Use of relatives for **G**⁻¹ Accuracies not good enough Theory not clear

Assumption of limited dimensionality

S – n x 1 vector containing additive information of population (haplotypes, chromosome segments, LD blocks)?

Breeding value Very small error $\mathbf{u} = \mathbf{Ts} + \mathbf{e}$

If \mathbf{U}_{c} contains n animals:

$$\mathbf{s} \approx \mathbf{T}_c^{-1} \mathbf{u}_c$$

Breeding values of any n animals contains all additive information

Choose core "**c**" and noncore "**n**" animals

$$\mathbf{u}_{n} = \mathbf{P}_{nc}\mathbf{u}_{c} + \varepsilon_{n}$$
$$\mathbf{u}_{c} = \mathbf{u}_{c}$$
$$\begin{bmatrix} \mathbf{u}_{c} \\ \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{P}_{nc} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{c} \\ \mathbf{\varepsilon}_{n} \end{bmatrix}$$

 $var(\mathbf{\epsilon}_n) = \mathbf{M}_{\mathbf{nn}}$

$$\mathbf{G} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{P}_{nc} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{cc} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{P}_{cn} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$
$$\mathbf{G}^{-1} = \begin{bmatrix} \mathbf{I} & -\mathbf{P}_{cn} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{nn}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{P}_{nc} & \mathbf{I} \end{bmatrix}$$

How to estimate **P** and inv(**G**)?

$$\operatorname{var}\left(\begin{bmatrix}\mathbf{u}_{c}\\\mathbf{u}_{n}\end{bmatrix}\right) = \begin{bmatrix}\mathbf{G}_{cc} & \mathbf{G}_{cn}\\\mathbf{G}_{nc} & \mathbf{G}_{nn}\end{bmatrix}\boldsymbol{\sigma}_{u}^{2}$$

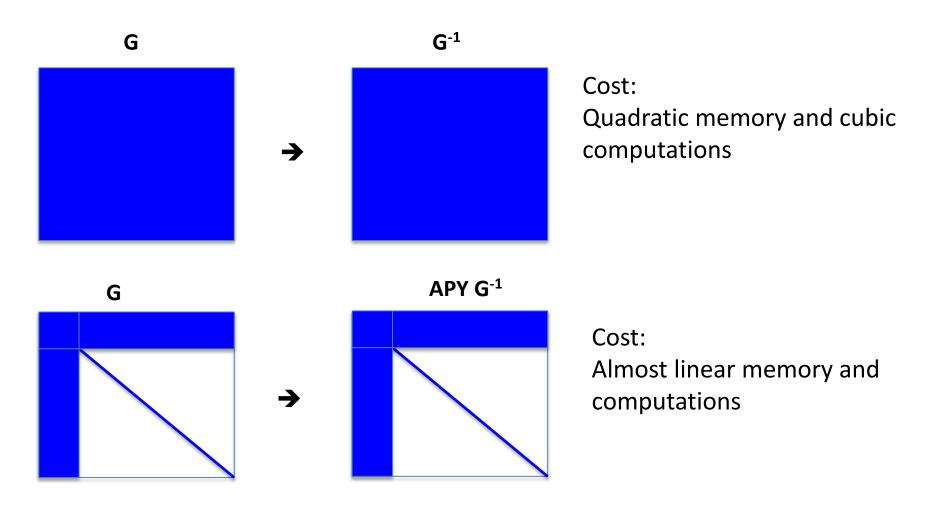
G is "true" relationship matrix

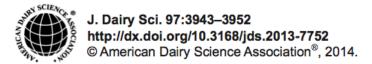
$$\mathbf{u}_n \mid \mathbf{u}_c = \mathbf{G}_{nc} \mathbf{G}_{cc}^{-1} \mathbf{u}_c, \quad \mathbf{P} = \mathbf{G}_{nc} \mathbf{G}_{cc}^{-1}$$

$$\mathbf{G^{-1}} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{cc}^{-1} \mathbf{G}_{cn} \\ \mathbf{I} \end{bmatrix} \mathbf{M^{-1}} \begin{bmatrix} \mathbf{G}_{nc} \mathbf{G}_{cc}^{-1} & \mathbf{I} \end{bmatrix}$$

APY algorithm (Algorithm for Proven and Young)

Properties of APY algorithm





Using recursion to compute the inverse of the genomic relationship matrix

I. Misztal,*1 A. Legarra,† and I. Aguilar‡

*Department of Animal and Dairy Science, University of Georgia, Athens 30602-2771 †INRA, UR631-SAGA, BP 52627, 31326 Castanet-Tolosan Cedex, France ‡Instituto Nacional de Investigación Agropecuaria, Las Brujas 90200, Uruguay

J. Dairy Sci. 98:1–5 http://dx.doi.org/10.3168/jds.2014-9125 © American Dairy Science Association[®], 2015.

Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes

B. O. Fragomeni,*¹ D. A. L. Lourenco,* S. Tsuruta,* Y. Masuda,* I. Aguilar,† A. Legarra,‡ T. J. Lawlor,§ and I. Misztal*

*Department of Animal and Dairy Science, University of Georgia, Athens 30602 †Instituto Nacional de Investigacion Agropecuaria, Canelones, 90200, Uruguay ‡INRA, UMR1388 GenePhySE, Castanet Tolosan, 31326, France §Holstein Association USA Inc., Brattleboro, VT 05302

GENETICS | INVESTIGATION

GENETICS | INVESTIGATION

Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size

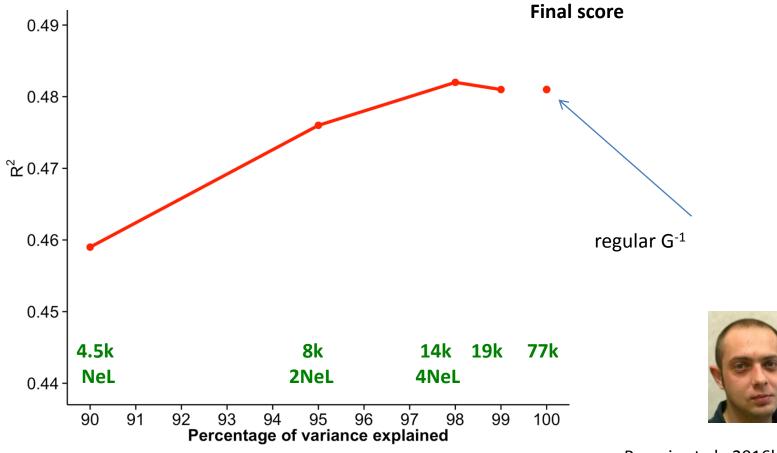
> Ignacy Misztal¹ Animal and Dairy Science, University of Georgia, Athens, Georgia 30602

> > The Dimensionality of Genomic Information and Its Effect on Genomic Prediction

> > Ivan Pocrnic,*.¹ Daniela A. L. Lourenco,* Yutaka Masuda,* Andres Legarra,[†] and Ignacy Misztal* *Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, and [†]Institut National de la Recherche Agronomique, GenPhySE, F-31326 Castanet-Tolosan, France

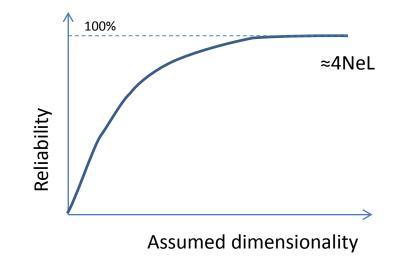
EAAP meeting 20

Reliabilities – Holsteins (77k)



Pocrnic et al., 2016b

Distribution of segments/haplotypes/..



Costs with 720k genotyped animals

- 30 M Holsteins
- 50 M records
- 764k 60k genotypes

ltem	BLUP	ssGBLUP
APY G	-	7 h
A22-1	-	10 min
rounds	402	464
Time/round	51 s	83 s
Total time	6 h	17 h

Which core animals in APY?

Bradford et al. (2017)

- Simulated populations (QMSim; Sargolzaei and Schenkel, 2009)
- Ne = 40
- #genotyped animals = 50,000
- Core animals:
 - Random gen 6 || gen 7 || gen 8 || gen 9 || gen 10 (y)
 - Random all generations

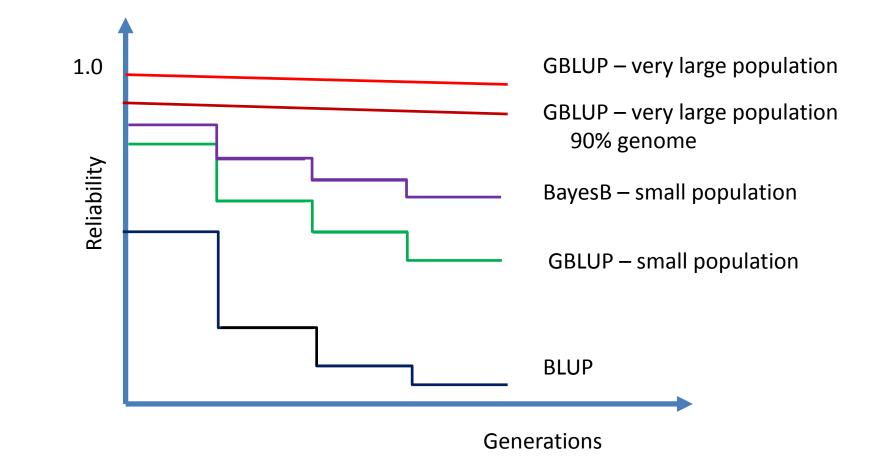
Which core animals in APY?

Accuracy 1 **G**⁻¹ 0.9 Т 0.8 0.2 0.1 0 98% 95% 90% NeL 4NeL Percent of variation explained in G

Gen 6 Gen 7 Gen 8 Gen 9 Gen 10 Random

Bradford et al. (2016)

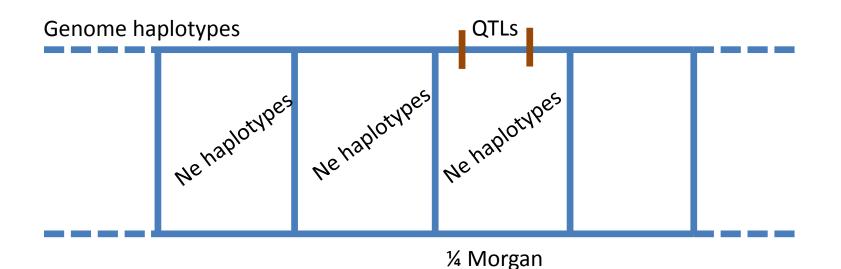
Persistence over generations



Very large – equivalent to 4NeL animals with 99% accuracy Are SNP effects from Holstein national populations converging

Theory of limited dimensionality

Number of haplotypes: 4 Ne L Ne within each ¼ Morgan segment



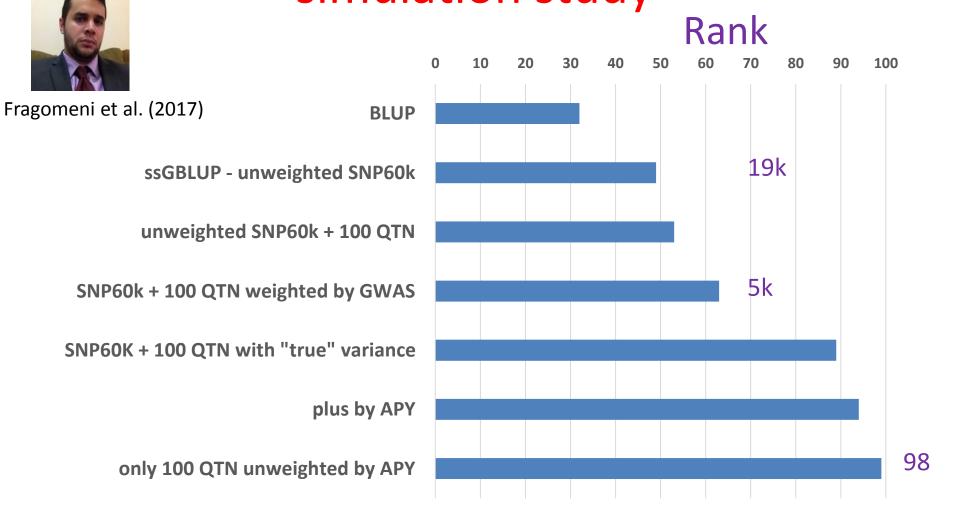
Dimensionality of ¼ Morgan case: Ne

or number of identified QTLs

Reduced dimensionality with weighted GRM

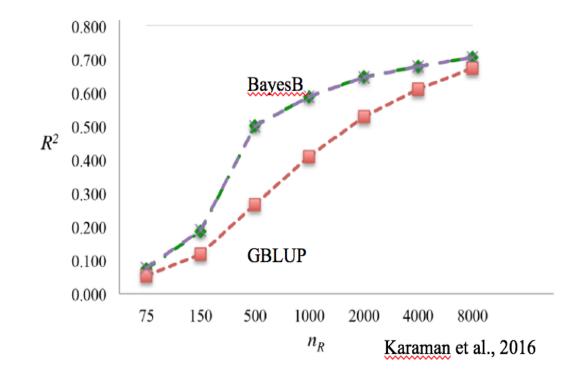
Fragomeni et al., 2018

ssGBLUP accuracies using SNP60K and 100 QTNs – simulation study



Multitrait ssGBLUP or SNP selection?

- SNP selection/weighting (BayesB, etc.)
 - Large impact with few genotypes
 - Little or no impact with many



Variance components

- Based on SNP
 - limitations
- REML based on relationships
 - Equations no longer sparse
 - YAMS sparse matrix package –up to 100 times speedup (Masuda et al., 2017)
 - APY for REML
- Method R (Legarra and Reverter, 2017)

Extra topics

- Matching pedigrees and genomic relationships
- Missing pedigrees
- Crossbreeding
- Causative SNP
- Haplotypes for crossbreds (Christensen et al., 2016)
- Metafounders (Legarra et al., 2016)
- Approximation of reliabilities

Conclusions

- Limited dimensionality of genomic information due to limited effective population size
- ssGBLUP suitable for any data set and model
- With large data sets for Holsteins:
 - Good persistence of predictions
 - Convergence of predictions from different countries

United States Department of Agriculture

National Institute of Food and Agriculture

Acknowledgements

Tom Lawlor, Holstein Assoc Paul VanRaden, AGIL USDA

zoetis

Pocrnic

Theory for APY

- Breeding values of core animals linear functions of:
 - Independent chromosome segments (Me)
 - Independent effective SNP
- E(Me)=4 Ne L (Stam, 1980; VanRaden, 2008)

Ne –effective population size

L – length of genome in Morgans

Me = 4 (Ne=100) (L=30) = 12,000

Accuracy and distance from markers to QTL

Fragomeni et al. (2017)

