

Thank you to the following sponsors for their support of the Interbull Annual Meeting

Evaluations: New Methodologies

Chair: P. VanRaden

Masuda, Y.

Lawlor, T.

Mrode, R.

Jiang, J.

Liu, Z.

Mota, R.R.

single-step GBLUP analysis. The application of several genomic models for the analysis of small holder dairy cattle data.

Modelling different forms of selection for linear type traits in a

Single-step GBLUP including more than 2 million genotypes

with missing pedigrees for production traits in US Holstein

A scalable Bayesian mixed model approach for GWAS and genomic prediction

Genomic prediction of health traits using a mixed bull and cow reference population for German Holsteins

Strategy to stabilize GEBV estimation under a quickly evolving mixed sire and cow based reference population in the single-

step evaluation system of the Walloon Region of Belgium

Single-step GBLUP including more than 2 million genotypes with missing pedigrees for production traits in US Holstein

Y. Masuda¹, S. Tsuruta¹, E Nicolazzi², and I. Misztal¹

1 University of Georgia, USA 2 Council on Dairy Cattle Breeding (CDCB), USA

2019 Interbull Meeting, June 22, Cincinnati, OH

Background

- Genomic prediction with single-step GBLUP (ssGBLUP)
- Required: compatibility in scale among relationship matrices

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- Issue: missing pedigrees with many genotypes
 - Missing elements in A^{-1} and A^{-1}_{22}
 - Compensation by unknown parent groups (UPG) or metafounders (MF)
- Several models for UPG in \mathbf{H}^{-1}

Missing parents in ssGBLUP

- Classical UPG • $\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- Complete UPG

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{G}^{-1}\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'\mathbf{G}^{-1} & \mathbf{Q}_2'\mathbf{G}^{-1}\mathbf{Q}_2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1}\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'\mathbf{A}_{22}^{-1} & \mathbf{Q}_2'\mathbf{Q}_2 \end{bmatrix}$$

• Pedigree UPG (complete except for Q'G⁻¹Q)

•
$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathbf{A}_{22}^{-1} \mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2' \mathbf{A}_{22}^{-1} & \mathbf{Q}_2' \mathbf{A}_{22}^{-1} \mathbf{Q}_2 \end{bmatrix}$$

It turns out that this formula is similar to $\mathbf{H}^{\Gamma-1}$ with metafounders.

Previous studies

- Koivula et al. (2017)
 - Complete UPG: Reasonable results
- Bradford et al. (2019)
 - Complete UPG: Low accuracy and high bias
 - Metafounders: Accurate and unbiased for young animals
- Masuda et al. (2018, 2019)
 - Complete UPG: Low accuracy in predictions
 - Pedigree UPG: Reasonable accuracy and inflation
- Not clear how **H**^{*} is justified in theory.
 - Also, no tests on ssGBLUP including UPG with > 2M genotypes.

Objectives

- To derive a reasonable inverse of the relationship-matrix (H^{-1}) with UPG or MF in ssGBLUP
- To implement the inverse in a genetic-evaluation software to handle millions of genotypes
- To validate the genetic trends and the predictability of young-bull predictions for production traits in US Holstein

Complete UPG

- Misztal et al. (2013) $H^* = \left(var \begin{bmatrix} u_1^* \\ u_2^* \\ g \end{bmatrix} \right)^{-1} = A^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} & -(G^{-1} - A_{22}^{-1})Q_2 \\ 0 & -Q_2'(G^{-1} - A_{22}^{-1}) & Q_2'(G^{-1} - A_{22}^{-1})Q_2 \end{bmatrix}$
 - Original derivation: QP-transformation of MME
 - Formal derivation as Quaas (1988):
 - $\mathbf{u}^* | \mathbf{g} \sim N(\mathbf{Q}\mathbf{g}, \mathbf{H})$ and $\mathbf{g} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$
 - Joint density: $p(\mathbf{u}^*, \mathbf{g}) \propto \exp\left(\begin{bmatrix}\mathbf{u}^{*\prime} & \mathbf{g}^{\prime}\end{bmatrix}\mathbf{H}^*\begin{bmatrix}\mathbf{u}^*\\\mathbf{g}\end{bmatrix}\right)$, then $\Sigma \to 0$
 - Updating process:

 $u_1, A \longrightarrow H \longrightarrow H^*$ $u_2, G g, \Sigma$ Question: Why should we apply UPG for genomic relationships?

Pedigree UPG

• Bradford et al. (2019) and Masuda et al. (2018, 2019)

$$\mathbf{H}^{*} = \left(var \begin{bmatrix} \mathbf{u}_{1}^{*} \\ \mathbf{u}_{2}^{*} \\ \mathbf{g} \end{bmatrix} \right)^{-1} = \mathbf{A}^{*} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(-\mathbf{A}_{22}^{-1})\mathbf{Q}_{2} \\ \mathbf{0} & -\mathbf{Q}_{2}'(-\mathbf{A}_{22}^{-1}) & \mathbf{Q}_{2}'(-\mathbf{A}_{22}^{-1})\mathbf{Q}_{2} \end{bmatrix}$$

- Original idea: decreasing the contribution of G^{-1} to UPG
- Formal derivation:
 - I skip it because of the time limit.
 - Updating process:

Tested \boldsymbol{A}^{*} and \boldsymbol{H}^{*}

Model	Inverse matrix	Abbr.
Pedigree BLUP with the standard UPG	$\mathbf{A}^* = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{Q} \\ -\mathbf{Q}'\mathbf{A} & \mathbf{Q}'\mathbf{A}^{-1}\mathbf{Q} \end{bmatrix}$	BLUP
ssGBLUP with the standard UPG	$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - 0.9\mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$	ssGBLUP classicUPG
ssGBLUP with complete UPG	$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \end{bmatrix}$	ssGBLUP compUPG
ssGBLUP excluding genomic UPG	$ H^* = A^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} & -(-A_{22}^{-1})Q_2 \\ 0 & -Q_2'(-A_{22}^{-1}) & Q_2'(-A_{22}^{-1})Q_2 \end{bmatrix} $	ssGBLUP pedUPG

Full data in Holstein

	Description	Number of records/animals
Phenotype	Protein yield (305-d basis) for US Holstein cows recorded between Jan. 1990 and Dec. 2018	61,229,782
Pedigree	Animals born in Dec. 2018 or earlier (3-gen. back from phenotyped cows) 16 UPGs: sex by 4-yr group	35,857,897
Genotype	Animals born in Dec. 2018 or earlier (79,294 markers) 15% with missing sire and/or dam	2,334,951

Validation study

2018 (N=2,315)

 $DYD/GPTA2018 = b_1 \times GPTA2014 + b_0$

- R² : validation reliability
- Slope (b_1) : Inflation of prediction

Model

- Same model as the official evaluation
 - Fixed effects: management, age*parity, inbreeding, and heterosis
 - Random effects: herd*sire interaction, additive genetic effect, permanent environmental effect, and residual effect
- APY for genomic relationships
 - 15,000 core animals (randomly chosen)
- UPG: sex by year-group
 - Full data (16): -1986, -1990, 1994, -1998, -2002, -2006, -2010, and 2011-
 - Truncated (14): -1986, -1990, 1994, -1998, -2002, -2006, and 2007-
- Genetic base: phenotyped cows born in 2005

Solving MME in this study

	OpenMP-based solver	MPI-based solver
Parallelism	OpenMP	MPI and OpenMP
CPU-cores used	6	8
Iteration on data	Data and pedigree files	APY G-inverse files
Genotypes (core animals)	2.3 M (15K)	2.3 M (15K)
Total memory usage	> 267 GB	> 17 GB
Wall-clock time per round	35 s	39 s
WC time for 600 rounds	5.8 h	6.5 h

The software development is still going on especially for efficiency.

R² and b1: DYD/GPTA2018 on GPTA2014

	R2		b1	
Benchmark	BLUP	pedUPG	BLUP	pedUPG
DYD2018-BLUP	0.34	0.67	0.43	0.79
DYD2018-pedUPG	0.33	0.77	0.42	0.85

For validation bulls with at least 50 daughters (N=2315)

R² and b1: DYD/GPTA2018 on GPTA2014

	R2		b1	
Benchmark	BLUP	pedUPG	BLUP	pedUPG
DYD2018-BLUP	0.34	0.67	0.43	0.79
DYD2018-pedUPG	0.33	0.77	0.42	0.85
PTA2018-BLUP	0.38	0.68	0.47	0.83
GPTA2018-pedUPG	0.34	0.82	0.44	0.90

For validation bulls with at least 50 daughters (N=2315)

Genetic trend for genotyped bulls in 2014

Predicted and actual trends for valid. bulls

Genetic trend for genotyped bulls in 2018

All/genotyped cows with record(s) in 2018

Summary

- An alternative H^* with UPG for A^{-1} and A^{-1}_{22} , not for G^{-1} is theoretically justified.
- The UPG model is reasonable in generic trends and predictability for young bulls.
- Single-step GBLUP with >2M genotypes is computationally feasible.
- This is a preliminary report. Additional research (with metafounders) is still in progress.

Acknowledgement

- Council of Dairy Cattle Breeding (CDCB) for phenotype, genotype, and pedigree data.
- Holstein Association USA for financial support.
- Paul VanRaden (AGIL, USDA) for discussion on UPG in genetic evaluation
- Andres Legarra (INRA), Ignacio Aguilar (INIA), and Daniela Lourenco (UGA) for discussion on various topics in ssGBLUP