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Background

• Genomic prediction with single-step GBLUP (ssGBLUP)

• Required: compatibility in scale among relationship matrices

𝐇−1 = 𝐀−1 +
0 0
0 𝐆−1 − 𝐀22

−1

• Issue: missing pedigrees with many genotypes
• Missing elements in 𝐀−1 and 𝐀22

−1

• Compensation by unknown parent groups (UPG) or metafounders (MF)

• Several models for UPG in 𝐇−1



Missing parents in ssGBLUP

• Classical UPG

• 𝐇∗ = 𝐀∗ +
0 0 0
0 𝐆−1 − 𝜔𝐀𝟐𝟐

−𝟏 0
0 0 0

• Complete UPG

• 𝐇∗ = 𝐀∗ +
0 0 0
0 𝐆−1 − 𝐀𝟐𝟐

−𝟏 0
0 0 0

+

0 0 0
0 0 −𝐆−1𝐐2

0 −𝐐2
′ 𝐆−1 𝐐2

′ 𝐆−1𝐐2

−

0 0 0
0 0 −𝐀22

−1𝐐2

0 −𝐐2
′ 𝐀22

−1 𝐐2
′ 𝐀22

−1𝐐2

• Pedigree UPG (complete except for Q’G-1Q)

• 𝐇∗ = 𝐀∗ +
0 0 0
0 𝐆−1 − 𝐀𝟐𝟐

−𝟏 0
0 0 0

+

0 0 0
0 0 −𝐆−1𝐐2

0 −𝐐2
′ 𝐆−1 𝐐2

′ 𝐆−1𝐐2

−

0 0 0
0 0 −𝐀22

−1𝐐2

0 −𝐐2
′𝐀22

−1 𝐐2
′ 𝐀22

−1𝐐2

It turns out that this formula is similar to 𝐇Γ−1 with metafounders.



Previous studies

• Koivula et al. (2017)
• Complete UPG: Reasonable results

• Bradford et al. (2019)
• Complete UPG: Low accuracy and high bias
• Metafounders: Accurate and unbiased for young animals

• Masuda et al. (2018, 2019)
• Complete UPG: Low accuracy in predictions
• Pedigree UPG: Reasonable accuracy and inflation

• Not clear how 𝐇∗ is justified in theory.
• Also, no tests on ssGBLUP including UPG with > 2M genotypes.



Objectives

• To derive a reasonable inverse of the relationship-matrix (𝐇−1) with 
UPG or MF in ssGBLUP

• To implement the inverse in a genetic-evaluation software to handle 
millions of genotypes

• To validate the genetic trends and the predictability of young-bull 
predictions for production traits in US Holstein



Complete UPG

• Misztal et al. (2013)

𝐇∗ = 𝑣𝑎𝑟
𝐮1
∗

𝐮2
∗

𝐠

−1

= 𝐀∗ +

𝟎 𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1 − 𝐆−1 − 𝐀22
−1 𝐐2

𝟎 −𝐐2
′ 𝐆−1 − 𝐀22

−1 𝐐2
′ 𝐆−1 − 𝐀22

−1 𝐐2

• Original derivation: QP-transformation of MME

• Formal derivation as Quaas (1988):
• 𝐮∗|𝐠 ∼ 𝑁(𝐐𝐠,𝐇) and   𝐠 ∼ 𝑁(𝟎, 𝚺)

• Joint density: 𝑝(𝐮∗, 𝐠) ∝ exp 𝐮∗′ 𝐠′ 𝐇∗ 𝐮∗

𝐠
, then 𝚺 → 0

• Updating process: 

𝐠, 𝚺
𝐇 𝐇∗

𝐮2, 𝐆

𝐮1, 𝐀

Question: Why should we apply UPG for 
genomic relationships?



Pedigree UPG

• Bradford et al. (2019) and Masuda et al. (2018, 2019)

𝐇∗ = 𝑣𝑎𝑟
𝐮1
∗

𝐮2
∗

𝐠

−1

= 𝐀∗ +

𝟎 𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1 − −𝐀22
−1 𝐐2

𝟎 −𝐐2
′ −𝐀22

−1 𝐐2
′ −𝐀22

−1 𝐐2

• Original idea: decreasing the contribution of 𝐆−1 to UPG

• Formal derivation:
• I skip it because of the time limit.

• Updating process:

𝐆

𝐇∗

𝐠, 𝚺
𝐮, 𝐀 𝐀∗

𝐠, 𝚺
𝐇 𝐇∗

𝐮2, 𝐆

𝐮1, 𝐀

Complete UPG:



Tested 𝐀∗ and 𝐇∗

Model Inverse matrix Abbr.

Pedigree BLUP with
the standard UPG 𝐀∗ =

𝐀−1 −𝐀−1𝐐

−𝐐′𝐀 𝐐′𝐀−1𝐐
BLUP

ssGBLUP with
the standard UPG 𝐇∗ = 𝐀∗ +

𝟎 𝟎 𝟎
𝟎 𝐆−1 − 0.9𝐀22

−1 𝟎
𝟎 𝟎 𝟎

ssGBLUP
classicUPG

ssGBLUP with
complete UPG 𝐇∗ = 𝐀∗ +

𝟎 𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1 − 𝐆−1 − 𝐀22
−1 𝐐2

𝟎 −𝐐2
′ 𝐆−1 − 𝐀22

−1 𝐐2
′ 𝐆−1 − 𝐀22

−1 𝐐2

ssGBLUP
compUPG

ssGBLUP excluding
genomic UPG 𝐇∗ = 𝐀∗ +

𝟎 𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1 − −𝐀22
−1 𝐐2

𝟎 −𝐐2
′ −𝐀22

−1 𝐐2
′ −𝐀22

−1 𝐐2

ssGBLUP
pedUPG



Full data in Holstein

Description
Number of 
records/animals

Phenotype
Protein yield (305-d basis) for US 
Holstein cows recorded between
Jan. 1990 and Dec. 2018

61,229,782

Pedigree
Animals born in Dec. 2018 or earlier
(3-gen. back from phenotyped cows)
16 UPGs: sex by 4-yr group

35,857,897

Genotype
Animals born in Dec. 2018 or earlier
(79,294 markers)
15% with missing sire and/or dam

2,334,951



Validation study

Phenotype
Genotype
Pedigree

1990Trunc2014 For GPTA using 
ssGBLUP
(GPTA2014)

2018
Dec.

2014
Dec.

𝐷𝑌𝐷/𝐺𝑃𝑇𝐴2018 = 𝑏1 × 𝐺𝑃𝑇𝐴2014 + 𝑏0
• R2 : validation reliability
• Slope (𝑏1): Inflation of prediction

2000

Validation Bulls: Genotyped 
young bulls with no tested 
daughters in 2014 but with at 
least 50 tested daughters in 
2018 (N=2,315)

Phenotype

2018
Dec.

2014
Dec.

Pedigree

20001990Full2018 DYD with different (G)PTA by 
VanRaden and Wiggans (1991)

DYD-BLUP, DYD-pedUPG,
PTA-BLUP, and GPTA-pedUPG

For benchmarks
(DYD/GPTA2018)Genotype



Model

• Same model as the official evaluation
• Fixed effects: management, age*parity, inbreeding, and heterosis

• Random effects: herd*sire interaction, additive genetic effect, permanent 
environmental effect, and residual effect

• APY for genomic relationships
• 15,000 core animals (randomly chosen)

• UPG: sex by year-group
• Full data (16): -1986, -1990, 1994, -1998, -2002, -2006, -2010, and 2011-

• Truncated (14): -1986, -1990, 1994, -1998, -2002, -2006, and 2007-

• Genetic base: phenotyped cows born in 2005



Solving MME in this study

OpenMP-based solver MPI-based solver

Parallelism OpenMP MPI and OpenMP

CPU-cores used 6 8

Iteration on data Data and pedigree files APY G-inverse files

Genotypes (core animals) 2.3 M (15K) 2.3 M (15K)

Total memory usage > 267 GB > 17 GB

Wall-clock time per round 35 s 39 s

WC time for 600 rounds 5.8 h 6.5 h

The software development is still going on especially for efficiency.



R2 and b1: DYD/GPTA2018 on GPTA2014

R2 b1

Benchmark BLUP pedUPG BLUP pedUPG

DYD2018-BLUP 0.34 0.67 0.43 0.79

DYD2018-pedUPG 0.33 0.77 0.42 0.85

PTA2018-BLUP 0.38 0.68 0.47 0.83

GPTA2018-pedUPG 0.34 0.82 0.44 0.90

For validation bulls with at least 50 daughters (N=2315)



R2 and b1: DYD/GPTA2018 on GPTA2014

R2 b1

Benchmark BLUP pedUPG BLUP pedUPG

DYD2018-BLUP 0.34 0.67 0.43 0.79

DYD2018-pedUPG 0.33 0.77 0.42 0.85

PTA2018-BLUP 0.38 0.68 0.47 0.83

GPTA2018-pedUPG 0.34 0.82 0.44 0.90

For validation bulls with at least 50 daughters (N=2315)



Genetic trend for genotyped bulls in 2014

Genotyped bulls with at least 
50 phenotyped daughters

Validation young bulls
(N=2,315)
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Predicted and actual trends for valid. bulls

Validation young bulls
(N=2,315)

7.8 lb

5.3 lb

+2.5 lb = 0.13 GSD 
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• Shift in genetic trend
• Bias in classical BLUP



Genetic trend for genotyped bulls in 2018
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All/genotyped cows with record(s) in 2018
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Summary

• An alternative 𝐇∗ with UPG for 𝐀−1 and 𝐀22
−1, not for 𝐆−1 is 

theoretically justified.

• The UPG model is reasonable in generic trends and predictability for 
young bulls.

• Single-step GBLUP with >2M genotypes is computationally feasible.

• This is a preliminary report. Additional research (with metafounders) 
is still in progress.
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