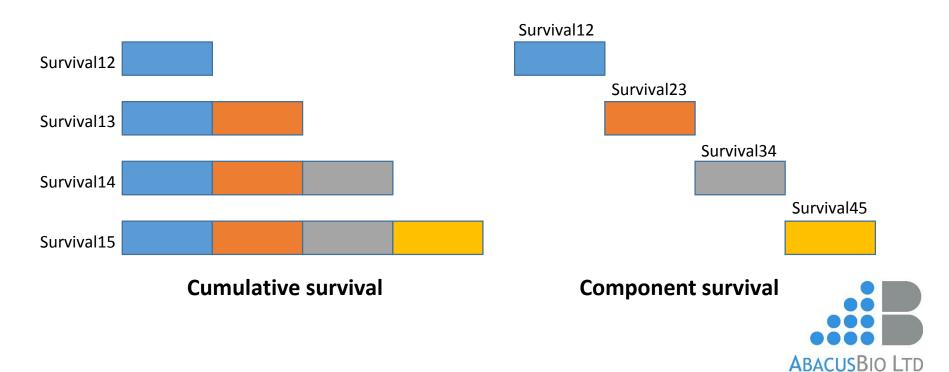


GENETIC PARAMETERS OF COW FUNCTIONAL SURVIVAL AND CONFORMATION TRAITS WITH RECOMMENDATIONS FOR GENETIC EVALUATION

Interbull Meeting - Tallinn August 27, 2017

K. Stachowicz, C. Quinton, S. Meyer, P. Amer, C. Phyn

Survival trait definitions


Current NZ evaluation uses cumulative or part-whole survival phenotypes
 assumes survival from first to fifth lactation is genetically one trait

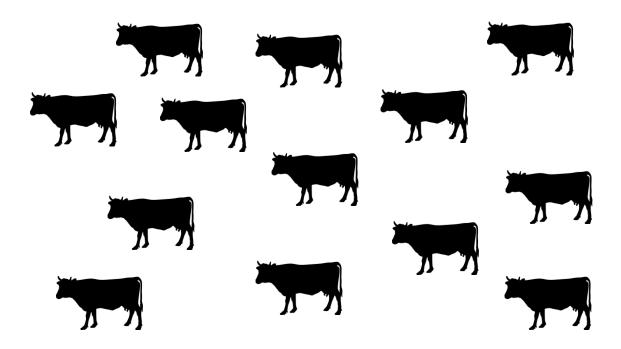
Survival trait definitions

- □ Current NZ evaluation uses **cumulative** or **part-whole** survival phenotypes
 - assumes survival from first to fifth lactation is genetically one trait
- Component survival definition is more precise
 - resolve if reasons for early parity survival differ from later parities

 Define functional survival phenotypes in herds where culling reasons are well recorded

- Define functional survival phenotypes in herds where culling reasons are well recorded
- Use rules-based approach to define the phenotypes where culling reasons are not recorded

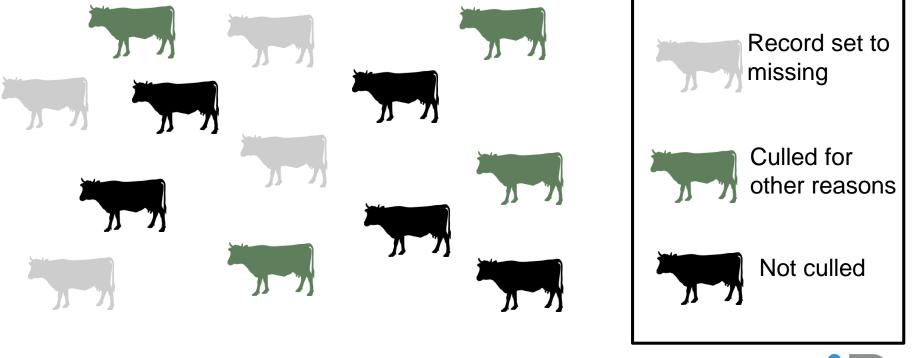
Objectives


- Define functional survival phenotypes in herds where culling reasons are well recorded
- Use rules-based approach to define the phenotypes where culling reasons are not recorded
- Estimate genetic parameters for survival traits and genetic correlations with conformation traits

Objectives

- Define functional survival phenotypes in herds where culling reasons are well recorded
- Use rules-based approach to define the phenotypes where culling reasons are not recorded
- Estimate genetic parameters for survival traits and genetic correlations with conformation traits
- Use selection index modelling to predict accuracy of survival EBV with and without conformation traits as predictors to define a set of traits to apply in genetic evaluation

Total survival: culling reasons are not considered


ABACUSBIO LTD

Functional survival: culling reasons are considered

Functional survival: culling reasons are considered

Culling reasons

- Low fertility (50%)
 and low production
 (10%) are main
 culling reasons
- We are interested in health-related culling reasons, e.g. calving trouble, legs/feet, mastitis.

Percent

40 35 30 25 20 15 10 5 Calving trouble dent down 0 Unknown Fertility Ction are altitis SCS nents **ABACUSBIO LTD**

Top 10 culling reasons

Rules to identify cows culled due to infertility or low production

Criteria	Identifies
1. Culling reasons – we know the truth, but if not:	
2. Dry-off codes	Production
3. Pregnancy diagnosis data	Fertility
4. Cows culled after 200 DIM	Fertility, Production
5. Cows culled in large groups at the end of lactation	Fertility, Production
6. Cows with more than 3/4/5 matings before cull	Fertility
7. Cows that calved after 42/63/84/105/126 days in a season	Fertility
8. Herd bottom 1/5/10 % for milk production	Production

Rules to identify cows culled due to infertility or low production

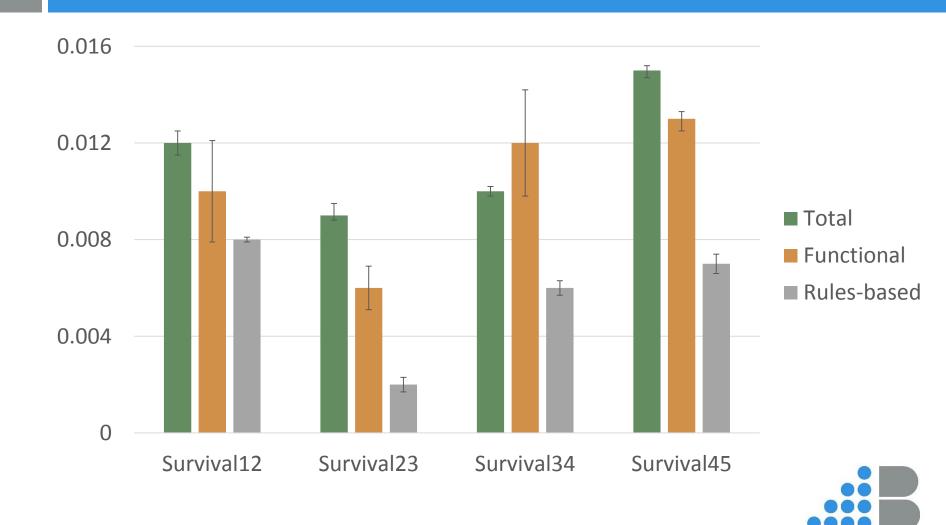
Criteria	Identifies
1. Culling reasons – we know the truth, but if not:	
2. Dry-off codes	Production
3. Pregnancy diagnosis data	Fertility
4. Cows culled after 200 DIM	Fertility, Production
5. Cows culled in large groups at the end of lactation	Fertility, Production
6. Cows with more than 3/4/5 matings before cull	Fertility
7. Cows that calved after 42/63/84/105/126 days in a season	Fertility
8. Herd bottom $1/5/10$ % for milk production	Production

Rules to identify cows culled due to infertility or low production

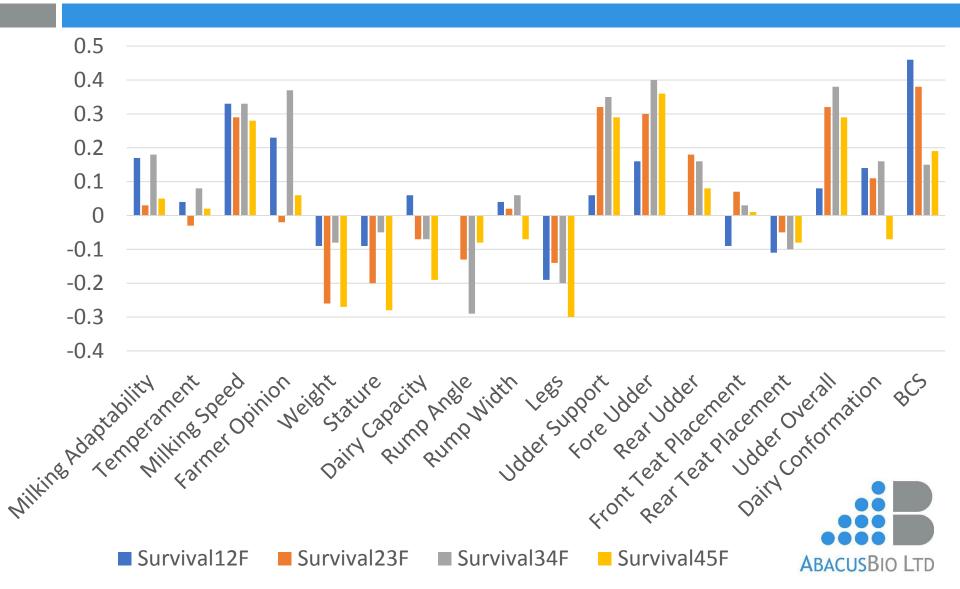
Criteria	Identifies
1. Culling reasons – we know the truth, but if not:	
2. Dry-off codes	Production
3. Pregnancy diagnosis data	Fertility
4. Cows culled after 200 DIM	Fertility, Production
5. Cows culled in large groups at the end of lactation	Fertility, Production
6. Cows with more than 3/4/5 matings before cull	Fertility
7. Cows that calved after 42/63/84/105/126 days in a season	Fertility
8. Herd bottom 1/5/10 % for milk production	Production
72% of correct prediction 18% incorrect prediction of fertility/production culls (type I error) 8% missed fertility culls (type II error) 2% missed production culls (type II error)	

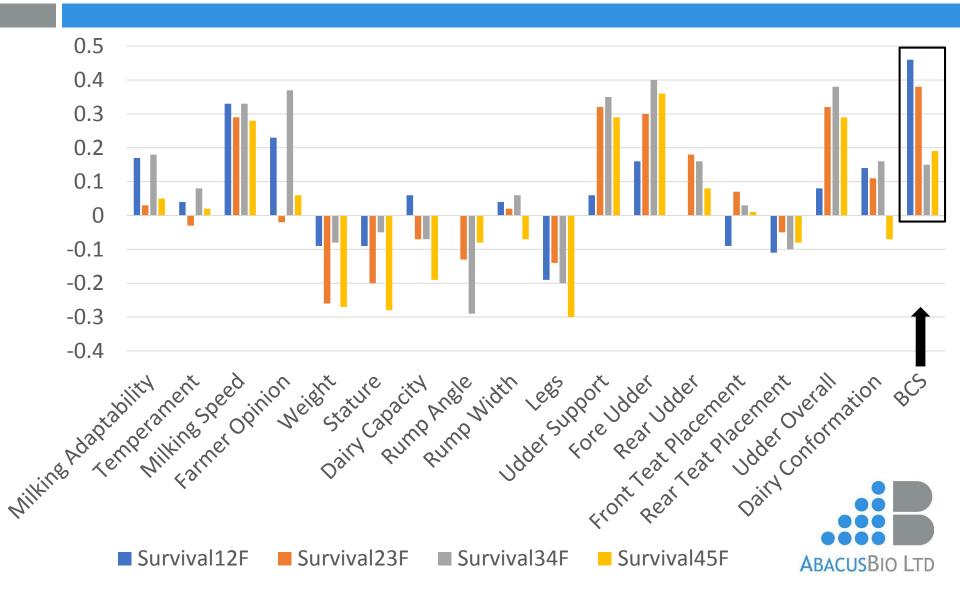
Survival phenotypes

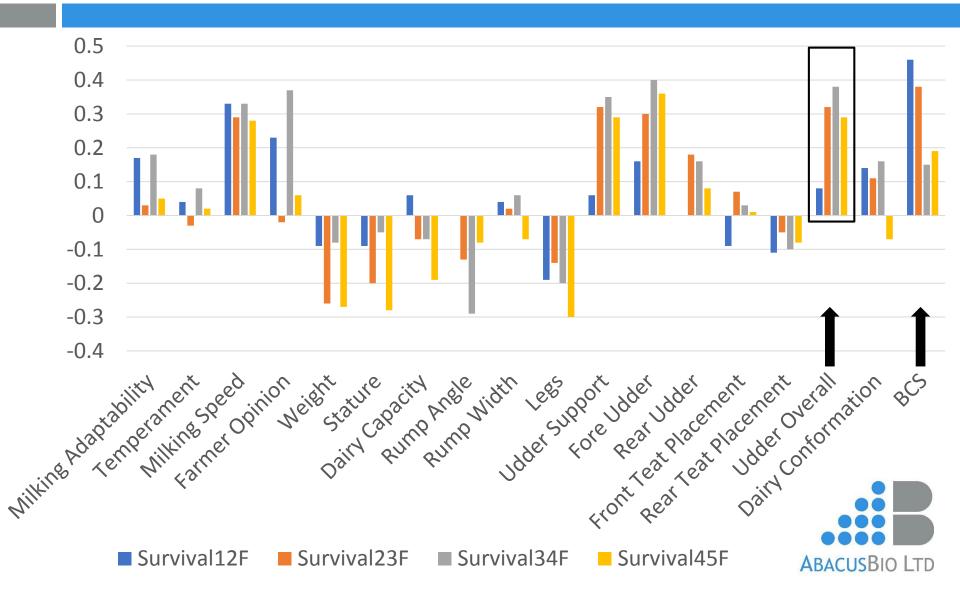
	Trait	Average Survival
	Survival12	0.88
Total	Survival23	0.90
IOLAI	Survival34	0.89
	Survival45	0.86
	Survival12F	0.94
Functional	Survival23F	0.95
(based on known culling reasons)	Survival34F	0.94
	Survival45F	0.93
Functional	Survival12FR	0.95
(based on rules	Survival23FR	0.96
to identify culling reasons)	Survival34FR	0.96
	Survival45FR	0.95

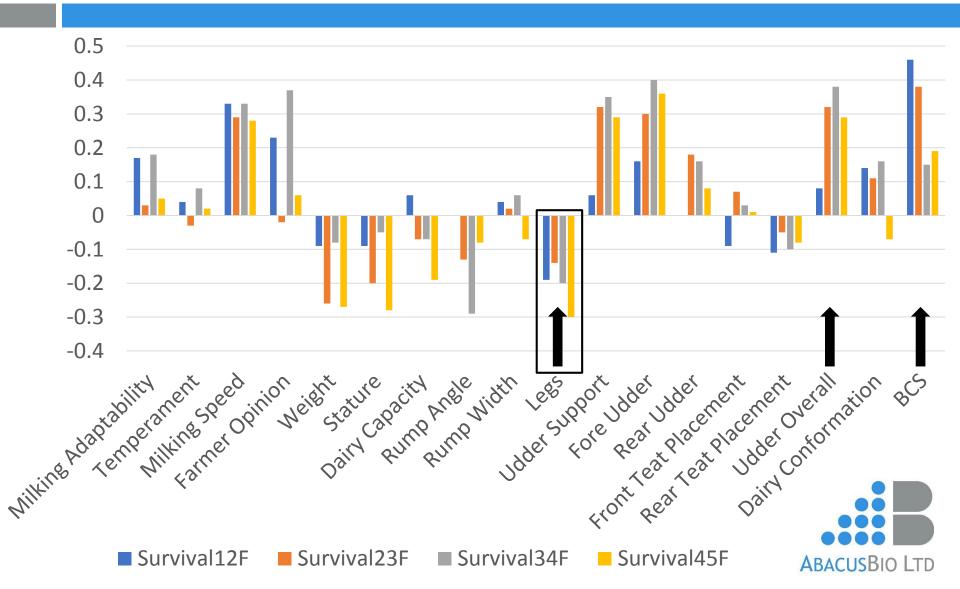

Model

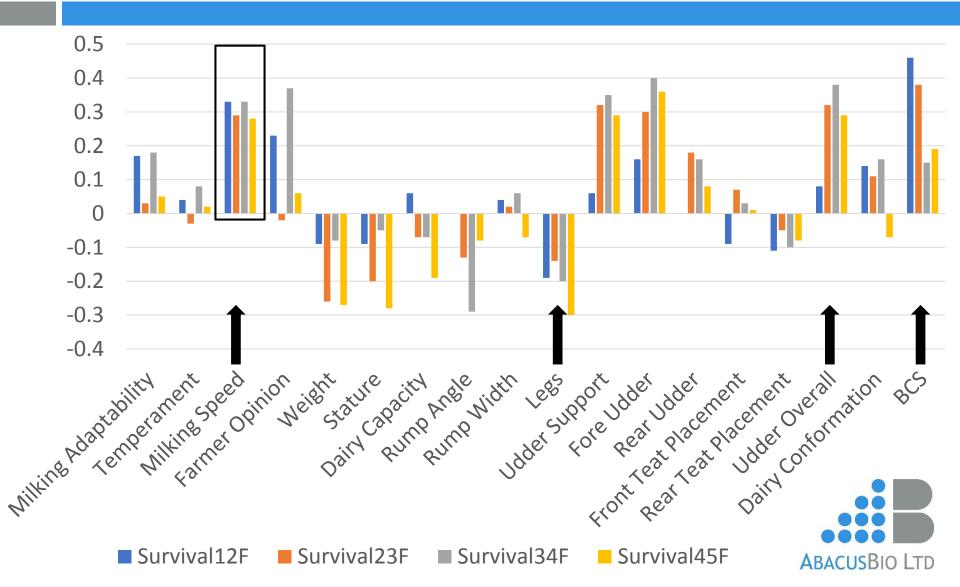
$y = CG + Age + HF_{FN} + HF_{NZ} + HET + REC + a + e$


- CG contemporary group (herd-year)
- Age fixed linear regression of age at calving
- HF_{FN} & HF_{NZ} breed effect of foreign and NZ HF
- HET breed specific heterosis effect
- REC breed specific recombination effect
- a random animal effect
- e residual




Heritabilities of survival




ABACUSBIO LTD

- Predicted accuracies of sire evaluation of functional survival, depending on available phenotypes
- Overall functional survival as an index:

$T = BV_{Surv12F} + 0.73 BV_{Surv23F} + 0.47 BV_{Surv34F} + 0.28 BV_{Surv45F}$

Indicator traits

Survival12

0.30

Accuracy

Indicator traits	Accuracy
Survival12	0.30
BCS	0.31
Milking Speed	0.27
Udder Overall	0.20
Legs	0.16

Indicator traits	Accuracy
Survival12	0.30
BCS	0.31
Milking Speed	0.27
Udder Overall	0.20
Legs	0.16
BCS + Udder Overall	0.42

Indicator traits	Accuracy
Survival12	0.30
BCS	0.31
Milking Speed	0.27
Udder Overall	0.20
Legs	0.16
BCS + Udder Overall	0.42
BCS + Udder Overall + Milking Speed + Legs	0.48

Indicator traits	Accuracy
Survival12	0.30
BCS	0.31
Milking Speed	0.27
Udder Overall	0.20
Legs	0.16
BCS + Udder Overall	0.42
BCS + Udder Overall + Milking Speed + Legs	0.48
BCS + Udder Overall + Milking Speed + Legs + Survival12	0.53

 Functional survival trait can be used for selection in New Zealand

Conclusions

- Functional survival trait can be used for selection in New Zealand
- Accuracy of evaluation prior to Survival12 phenotype being available can be improved by incorporating conformation traits as predictors
 - BCS
 - Milking Speed
 - Udder Overall
 - Legs

Acknowledgements

"This project was funded by a partnership (DRCX1302) between the New Zealand Ministry of Business, Innovation and Employment and New Zealand dairy farmers through DairyNZ Inc., and includes AgResearch core funding"

