Modelling different forms of selection for linear type traits in a single-step GBLUP analysis.

Tom Lawlor, Shogo Tsuruta, Daniela Lourenco, Yutaka Masuda, Ignacy Misztal

University of Georgia, Athens and Holstein Association USA Inc., Brattleboro, VT

Outline

Results from two time periods

Single-step genomic BLUP, APY, 15,000 random core animals

> Multiple trait animal model

Discuss impact of adding
 Inbreeding for a Common Ancestor by Year-of-Birth in A⁻¹
 Unknown Parent Groups in A⁻¹ and A₂₂⁻¹

US Holsteins Linear Type Traits

Different selection intensities and mating practices

2010 data

8,642,407 animals in pedigree
150,287 genotyped animals
9,235,328 phenotypic records
5,932,679 cows with records

Two time periods

2010 data to predict 2014 GEBVs
2014 data to predict 2018 GEBVs

2014 data

10,679,592 animals in pedigree **841,182** genotyped animals 10,181,011 phenotypic records 6,634,328 cows with records

2018 data

13,591,145 animals in pedigree
2,334,951 genotyped animals
10,946,264 phenotypic records
7,216,767 cows with records

Missing Ancestors

Proper modeling allows for better accounting of these missing ancestors
 ➢ Inbreeding of a Common Ancestor by Year-of-Birth in A⁻¹ (already in A₂₂⁻¹)
 ➢ Unknown Parent Groups in A⁻¹ and A₂₂⁻¹

These MODEL additions should reduce bias

Accounting for inbreeding of missing ancestors results in a decrease in the Additive Genetic Variance.

Lowering the Additive Genetic Variance or lowering the Heritability reduces overprediction of GEBVs.

UPG allows for the proper modelling of genetic trend

Results				
Different Models	Average b ₁			
Inbreeding for a Common Ancestors by Year-of-Birth in A ⁻¹ AND UPG in A ⁻¹ and A ₂₂ ⁻¹	1.07			
Inbreeding for a Common Ancestor by Year-of-Birth in A ⁻¹	0.90			
Parent Average	0.78			

Adding Inbreeding to A⁻¹

Genotyped bulls: Data up to 2010

TRAIT 7

Genotyped bulls: Data up to 2018

Directional – Score of 50 is ideal

Directional – Score of **50** is ideal

Higher score Is Better

Cows with Feet pointing STRAIGHT have better Locomotion

Intermediate optimum – Score of 25 is ideal

FRONT TEAT PLACEMENT - TP Primary Trait

1-5 pts. Extremely wide placement on outside of guarter

25 pts. Centrally placed on quarter

45-50 pts. Base of teats on extreme inside of guarter.

REAR TEAT PLACEMENT - RT

Primary Trait

1-5 pts. Extremely wide placement on outside of guarter

Centrally placed

on quarter

45-50 pts. Base of teats on extreme inside of quarter

RUMP ANGLE - RA Primary Trait

1-5 pts. Pins clearly higher than hooks

25 pts. Slight slope from hooks to pins

45-50 pts. Extremely sloped from hooks to pins

25 pts. Intermediate set in hock

45-50 pts. Extremely sickled

Adding Inbreeding values for a Common Ancestor by Year-of-Birth in A⁻¹

Unknown Parent Groups in A⁻¹ and A₂₂⁻¹

Under-prediction $b_1 = 1.13$ for traits with Negative Assortative Mating

UPG solutions for Directional Selection Traits

UPG solutions for Directional Selection Traits

Higher EBV

for Unknown Mate in more recent years

UPG solutions for Intermediate Optimum

No UPG for G

Year of birth

••• Rear Legs, Side View

--Rump Angle

UPG solutions for Intermediate Optimum

$\mathbf{EBV}=\mathbf{0}$

Is NOT a good assumption for an Unknown Mate when Negative Assortative Mating is occurring

Year of birth

••• Rear Legs, Side View

--Rump Angle

UPG solutions for Intermediate Optimum *

Does not take into account that High EBV would have a Low EBV mate

* Positive trend due to High genetic correlation with other UDDER traits

Changes in b₁ are associated with the changes in the trait's Additive Genetic Variance

		Category	Change in Heritability
Т	Two traits behaving strangely	Feet & Legs Score	+2.0%
	Feet & Legs Score Stature	Stature	- 0.3%
		Directional	-1.6%
		Intermediate Optimum	-2.9%

Two Goals Positive Assortative Mating

Alternative Forms of Selection and Mating

Category	Mating	Vari	ance
New Trait	Random		Increase
Two Goals	Positive Assortative		Small Decline
Directional	Random		Decrease
Intermediate Optimum	Negative Assortative		Large Decrease

2018	Feet & Leg Score	0.75	*	New Trait - increase in heritability
2010	Strength	0.93		
results	Stature	0.95	* *	Positive assortment mating
from	Rear Udder Width	0.96		
	Foot Angle	0.98		
complete	Body Depth	0.98		
model	Udder Cleft	0.98		
model	Rump Width	0.99		
	Rear Udder Height	1.01		
	Fore Udder Attachment	1.02		
	Udder Depth	1.02		
	Teat Length	1.02		
	Rear Legs – Rear View	1.05		
	Dairy Form	1.05		
	Rump Angle	1.12	* * *	Negative assortative mating
	Front Teat Placement	1.13	* * *	Negative assortative mating
	Rear Legs – Side View	1.13	* * *	Negative assortative mating
	Rear Teat Placement	1.24	* * *	Negative assortative mating

Conclusions

- Genetic evaluation models will need to be fine tuned for:
 - Differences in genetic progress.
 - Differences in changes in heritability.
 - Differences in types of assortative mating.
- Current UPG causes problems for traits with Negative Assortative Mating
- More genotyping improves performance of ssGBLUP

Acknowledgements

