

EFFICIENT BLOCK-GIBBS SAMPLING IN VARIANCE COMPONENT ESTIMATION for predictions which combine phenotypic and genomic information

Viktor Milkevych Per Madsen Hongding Gao Just Jensen

12 February 2018 WCGALP, Auckland

INTRODUCTION

- Genomic-based selection is widely applied in animal breeding.
- The data sets include non-genotyped individuals the obvious method of choice is **single-step approach**.
- For estimation of **unknown variance** the **Gibbs sampler** is of practical importance.

MOTIVATION and OBJECTIVE

- Desirable efficiency of Gibbs sampler is not always achievable.
- It partly relies on the properties of variance-covariance matrix.

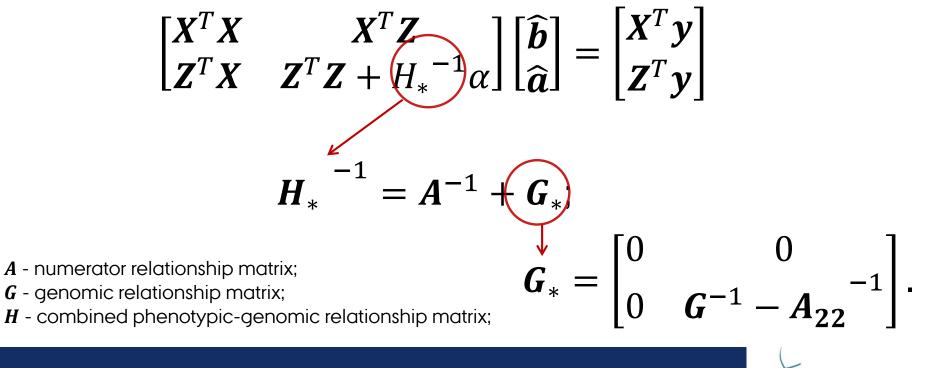
We study the **effect of amount of genomic information** in the model on **performance and efficiency of Gibbs sampler** using a consecutive and block updating schemes.

UNIVARIATE LINEAR MIXED MODEL

y = Xb + Za + e

- y vector of observations;
- **b** vector of mean;
- a vector of random effects;
- e residual vector;
- X, Z known incidence matrices.

MIXED MODEL EQUATIONS



GenS

PROPERTIES OF GIBBS SAMPLER

1. Markov chain has a transition density with **mean**:

$$E(\boldsymbol{\theta}^{t+1}|\boldsymbol{\theta}^t) = \boldsymbol{B}\boldsymbol{\theta}^t + \boldsymbol{c}.$$

2. And dispersion: $\boldsymbol{\Sigma} - \boldsymbol{B}\boldsymbol{\Sigma}\boldsymbol{B}^{T}$.

3. The exact convergence rate: $ho=
ho({m B})$;

$$ho$$
 - spectral radius of $~~oldsymbol{B} = -oldsymbol{L}^Toldsymbol{U}$.

VARIABLE G_*

$$H_*^{-1} = A^{-1} + G_*$$

 $G_* \in \{0, G\}$:

for vector of random effects $a \sim N(0, A\sigma_a^2);$ $a \sim N(0, G\sigma_a^2);$ $a \sim N(0, H\sigma_a^2);$

Markov chain transition density **mean**:

$$E(\boldsymbol{\theta}^{t+1}|\boldsymbol{\theta}^t) = \boldsymbol{B}\boldsymbol{\theta}^t + \boldsymbol{L}^{-1}(\boldsymbol{\mu} - \boldsymbol{d}^{t+1}); \quad \boldsymbol{d}^{t+1} = \boldsymbol{G}_*\boldsymbol{\theta}^t.$$

FORMAL OBJECTIVE

We study the **effect of disturbance vector**:

$$\boldsymbol{d}^{t+1} = \boldsymbol{G}_* \boldsymbol{\theta}^t.$$

- Danish Jersey cattle population simulated using
 ADAM software (Aarhus University, QGG).
- Genome consisted of 30 chromosomes, each 100 cM in length.
- Conventional breeding scheme.
- Phenotypes: 16945; animals in pedigree: 19701.

Number of non-zero elements in variance structure

Genotyped individuals, $\times 10^3$	Number of elements, $\times 10^6$	gi
0	0.06	0
3.2	10.17	0.19
6.5	41.90	0.38
8.4	70.04	0.50
10.7	114.04	0.63
12.8	163.57	0.76
14.9	221.57	0.88
16.6	276.30	0.98
16.9	287.13	1

Gen

MODEL

$$y = Xb + Za + e$$

- y vector of observations (stature);
- **b** vector of mean (herd-year-season, HYS: 4 seasons, 5 years, 25 herds);
- a vector of animal effects;
- e residual vector.

UPDATING SCHEME

- Target vector $\boldsymbol{\theta} = (\boldsymbol{b}, \boldsymbol{a}, \sigma_a^2, \sigma_e^2)^T$ with a density $P(\boldsymbol{\theta})$.
- Conventional update:
 Gibbs sampler generates transition states *θ^t*, *θ^{t+1}* consecutively.
- Block update:

The *m*-dimensional random effect vector $\boldsymbol{\theta}_a$ is grouped into one block $\boldsymbol{\theta}_a = (\theta_{a_1}, \theta_{a_2}, \dots, \theta_{a_m})^T$, the rest $\boldsymbol{\theta}_{-a} = (\boldsymbol{b}, \sigma_a^{-2}, \sigma_e^{-2})^T$ - not blocked.

COMPUTATIONAL DETAILS

Sampling algorithm:

GenS

12 FEBRUARY 2018

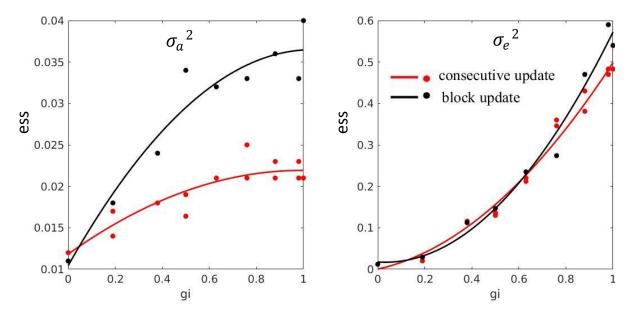
- **input:** precision matrix **M**
- output: $\theta \sim N(0, M^{-1})$
- 1. Cholesky decomposition: $M = CC^{T}$
- 2. Sampling: $z \sim N(0, I)$
- 3. Solving: $C^T \theta = z$

COMPUTATIONAL DETAILS

Implementation:

- MCMC package of DMU software (Aarhus University, QGG).
- **DMU** is software for analysis of multivariate mixed models.

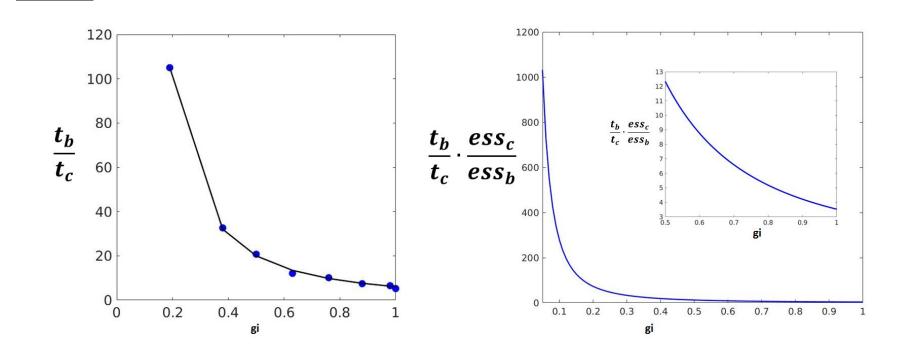
RESULTS: RELATIVE EFFICIENCY OF SAMPLING



ess - effective sample size normalized by the chain size;

gi - relative amount of genomic information in variance-covariance matrix

RESULTS: COMPUTATIONAL EFFICIENCY



12 FEBRUARY 2018

- 1. Sampling efficiency increases proportionally to amount of genomic information.
- 2. Computational efficiency is low for block update.
- 3. Sampling standard error decrease proportionally to increase of amount of genomic information in a model.

