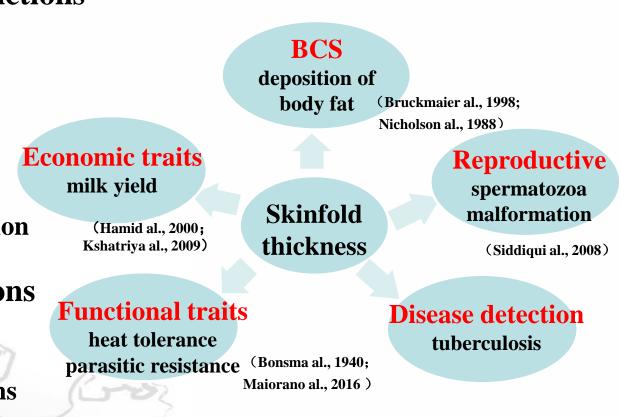


Genetic analysis of skinfold thickness and its association with body condition score, and milk production traits in Chinese Holstein population

Hailiang Zhang¹, Wei Xu¹, Aoxing Liu^{1,2}, Xiang Li¹, Hanpeng Luo¹, Yachun Wang¹


1.China Agricultural University, China2.Aarhus University, Denmark

Feb 11, 2018 Auckland, NZ

Background

- Skin: the outermost structure and the largest organ of the mammals' body, undertakes the many important functions
- > Skinfold thickness:
- ✓ widely used to represent skin thickness
- ✓ measuring method friendly to animal
- ✓ suitable for measurement in large population
- The neck and rib are the body regions frequently used in previous studies
 - different repeatability in different regions
 - **different measuring difficulty in different regions**

Background

➢ In previous studies, the factors affecting the skinfold thickness have been explored (Dowling al., 1955; Patel al., 1958; Hayman al., 1966)

 $\checkmark\,$ breed, body regions, nutrition status, gender, age and measurer

Skinfold thickness is an important trait, however not been considered seriously in dairy. Very little studies regarding genetic analysis of skinfold thickness

year	author	species	Body region	No. Obs	h^2
2016	Maiorano	Nellore	scapula	17940	0.12 ± 0.02
1991	Slee	Merino Sheep	right mid-side	-	0.35 ± 0.19

The objectives of this study were to estimate the heritability of skinfold thickness and its genetic association with BCS and milk production traits in Chinese Holstein

Material & method

□ Holstein milking cows in 9 scaled farms in Beijing

□ Measurement: skinfold thickness, BCS

- $\checkmark\,$ skinfold thickness at the neck (STN)
- $\checkmark\,$ skinfold thickness at the last rib (STR)
- **Device: Digital Vernier caliper**
- □ Collecting test-day records during measuring period

Measuring skinfold thickness at the neck

Measuring skinfold thickness at the last rib

Body condition score (BCS)

Year-month	No. of farms
2015, July-Aug	6
2016, June-Aug	7

Material & method

Factor analysis (SAS, GLM)

 $STN_{ijkl} = \mu + FM_i + PARITY_j + STAGE_k + b_1BCS + e_{ijkl}$

 $STR_{ijklm} = \mu + FM_i + PARITY_j + STAGE_k + BODYSIDE_l + b_2BCS + e_{ijklm}$

Genetic analysis (DMU, animal model)

□ bi-variate: STN, STR

6-traits: STN, STR, BCS, MY, FP and PP

STN = FM + PARITY + STAGE + A + E

STR = FM + PARITY + STAGE + BODYSIDE + A + E FR: far

BCS = FR + STAGE + A + E

MY = FY + PARITY + STAGE + A + E

FP = FY + PARITY + STAGE + A + E

PP = FY + PARITY + STAGE + A + E

Traits

STN: skinfold thickness over the neck STR: skinfold thickness over the last rib **BCS:** body condition score MY: milk yield *FP*: milk fat percentage *PP*: milk protein percentage **D** Effects FM: farm-measurer of skinfold FR: farm-rater of BCS FY: farm-year of test-day records *PARITY*: parity of the cow *STAGE*: milking stage of the cow **BODYSIDE:** body side of the measured cow b_1/b_2 : regression coefficient for BCS A: random additive genetic effect E: random residual effect

Descriptive statistics

Traits	No. Obs	MAX	MIN	MEAN	SD	CV
STN/mm	4428	1.00	13.28	7.16	1.30	18.1%
STR/mm	4452	1.07	22.77	11.76	1.97	16.7%
BCS	5810	1.00	5.00	2.90	0.79	27.4%
MY/kg	5646	0.80	90.00	34.58	10.20	29.5%
FP/%	4980	0.68	7.99	3.97	0.88	22.2%
PP/%	5544	1.53	9.33	3.01	0.30	10.1%

- The STN was thinner than STR
- There is a significant body side effect on skin thickness at the last rib!

Factor analysis

Traits R ²		FM/FS/FY			Stage		Parity		BCS		Body side	
Iraits	ĸ	df	F-value	df	F-value	df	F-value	df	F-value	df	F-value	
STN	0.39	13	205.41**	5	6.23**	4	19.49**	1	60.76**			
STR	0.37	12	109.56**	5	3.18**	4	27.78**	1	71.53**	1	149.69**	

Results from bi-variate model

Traits	No. Obs	Additive VC	Error VC	Phenotype VC	Heritability ±SE
STN	4307	0.13	0.90	1.03	0.13 ± 0.03
STR	4331	0.63	1.97	2.60	0.24 ± 0.04

Results from 6-traits model

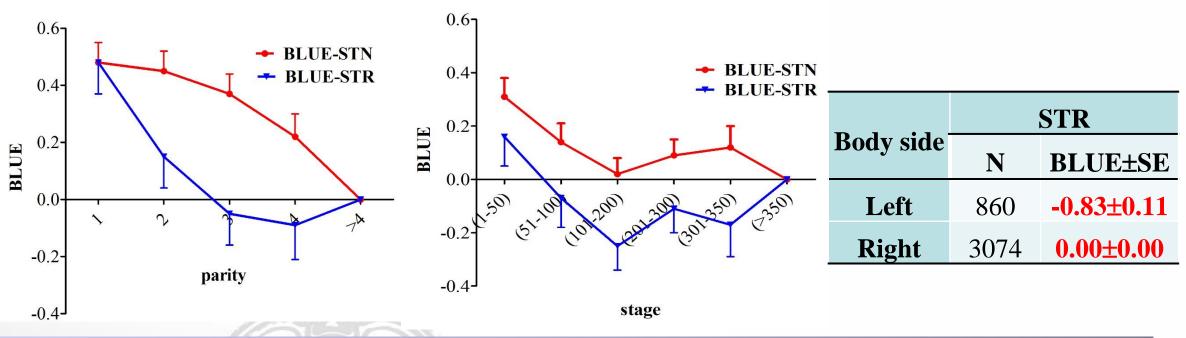
Traits	No. Obs	Additive VC	Error VC	Phenotype VC	Heritability ±SE
STN	4307	0.13	0.90	1.03	0.13 ± 0.03
STR	4331	0.64	1.96	2.61	0.25 ± 0.05
BCS	5585	0.05	0.34	0.39	0.12 ± 0.03
MY	5634	8.34	68.73	77.07	0.11 ± 0.02
FP	4969	0.05	0.66	0.71	0.07 ± 0.02
PP	5533	0.01	0.07	0.08	0.08 ± 0.02

- ✓ Estimated heritabilities for
 STN was higher than STR:
 low to moderate
- ✓ Estimated heritability of
 STN & STR are similar
 between bi-variate model
 and 6 traits model
- ✓ The estimated heritability
 was similar with the previous
 study on Nellore (Maiorano al., 2016)

Results from 6-traits model

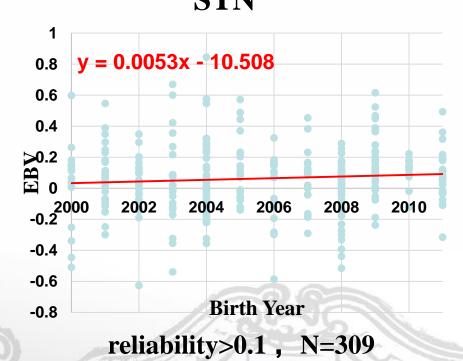
Genetic (below the diagonal) and phenotypic (above the diagonal) correlations

Traits	STN	STR	BCS	MY	FP	PP
STN		0.33	0.13	-0.01	0.00	-0.01
STR	0.80 ± 0.08		0.15	-0.05	-0.02	-0.02
BCS	0.34 ± 0.15	0.19 ± 0.14		-0.21	0.03	0.09
MY	0.13±0.16	-0.03 ± 0.15	-0.35 ± 0.14		-0.08	-0.16
FP	0.13 ± 0.20	0.04 ± 0.18	0.17 ± 0.19	-0.69 ± 0.15		0.28
PP	0.05 ± 0.19	0.04 ± 0.17	0.30 ± 0.12	-0.58 ± 0.15	0.66 ± 0.17	

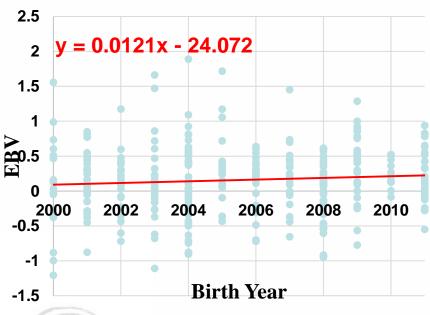

- ✓ a high genetic correlation existed between STN and STR
- ✓ a moderate and positive genetic correlation between STN and BCS (0.34)
- ✓ Low genetic correlations existed between skinfold thickness and milk performance. r_g of STN and milk production traits were higher than that between STR and milk production traits

LAN EN A

BLUE of fixed effects


BLUE: best linear unbiased estimated

- ✓ Roughly, skinfold thickness decreased with the increase of parity, first drop and then rise with the increase of DIM
- Skinfold thickness is sensitive to change of parity and milking stage in lactating cows



STN STR Senetic trend of EBV of skinfold thickness (bulls with Rel. >0.1)

From 2000 to 2011

Change of EBV=0.06 mm=0.17σ_A

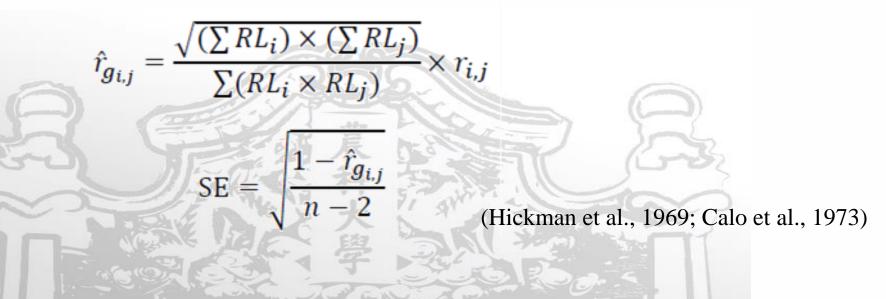
reliability>0.1, N=329

Change of EBV=0.14 mm=0.18 \sigma_A

Conclusions

- Skinfold thickness is a trait with a low to moderate heritability, and there is a high genetic correlation between skinfold thicknesses on different body regions in Holstein population
- Skinfold thickness is easy measurable trait and sensitive to change of parity and milking stage in lactating cows
- Skinfold thickness can be considered as an additional information of BCS to evaluate fat deposition
- Selection on skinfold thickness to improve milking cow's ability to fight with the negative energy balance is feasible as only weak genetic correlations existed between skinfold thickness and milk performance

Acknowledgement



Genetic correlations with other traits

	Rectal	Rectal		Healthy	Healthy	Healthy	Healthy
	temperature	temperature	longevity	traits	traits	traits	traits
	(AM)	(PM)		(reproduction)	(digestion)	(udder)	(hoofs)
STN	-0.14	-0.02	0.13	-0.14	0.01	0.03	0.06
STR	-0.11	-0.09	0.20	-0.11	0.00	-0.01	-0.02

