# Evaluation of conception rate in Nordic dairy cattle

A.-M. Tyrisevä<sup>1</sup>, K. Muuttoranta<sup>1</sup>, J. Pösö<sup>2</sup>, U.S. Nielsen<sup>3</sup>, J.-Å. Eriksson<sup>4</sup>, G.P. Aamand<sup>5</sup>, E.A. Mäntysaari<sup>1</sup>, and M.H. Lidauer<sup>1</sup>

<sup>1</sup>Natural Resources Institute Finland
<sup>2</sup>Faba Co-op
<sup>3</sup>Växa Sweden
<sup>4</sup>SEGES Cattle
<sup>5</sup>Nordic Cattle Genetic Evaluation NAV



#### Nordic fertility evaluation model update

- Three breeds: Holstein, Nordic Red Dairy Cattle, Jersey
- Highlights:
  - From sire model to animal model
  - Breed-specific variance components for all traits
  - Conception rate (CR) as a new trait
  - Correction for sexed semen for CR, non-return rate (NRR), number of inseminations (AIS) and interval from first to last service (IFL)
    - NRR and CR: semen type of service
    - AIS and IFL pre-corrected:
      - Average effect of sexed semen 11% for all breeds and parities
      - 11% of average cycle: heifers 3.8 days, cows 4.6 days

Pre-correction:

AIS = original AIS – nsex \* 0.11 IFL = original IFL – nsex \* coefficient nsex = number of services with sexed semen / parity



#### Conception rate

- Harmonization of fertility evaluations among EuroGenomics countries → Development of an evaluation for CR in Nordic countries
- Each service of a female defined as an observation
  - Maximum of 10 services / parity
- Observations for CR (0, 1, p) are defined by a complex decision process based on several information sources: services, pregnancy checks, calvings, information on selling alive, and cullings



### Model

- Multi-trait multi-lactation repeatability animal model:
  - y = herd x first calving year (heifers: birth year)
    - + insemination year x month x country
    - + age of heifers at first service x country
    - + service number x country
    - + year class x semen type x country
    - + total heterosis
    - + permanent environment
    - + additive animal
    - + residual
- Pre-adjustment for heterogeneous variance

y is a repeated observation either within trait CR0, CR1, CR2, or CR3

Fixed effect Random effect



#### Modeling herd-year: actual calving vs. first calving year

Interval from calving to first service, cows





#### Modeling service number

- Necessary to include service number to model the change in expectation if a cow failed to conceive
  - Removed over-estimation of the environmental trend
  - Corrected genetic trend estimates \_
  - Resulted in smaller estimated heritabilities
- Validated with a simulation study: Muuttoranta et al. 2016 EAAP



INSTITUTE FINLAND

#### Modeling sexed semen

Prevalence of use: DNK > FIN > SWE
 Jersey > Holstein > RDC
 heifers > cows
 first > second > third service

#### Use of sexed semen in DNK Jersey

| Parity | Prevalence,% | Service<br>number | Prevalence,% |
|--------|--------------|-------------------|--------------|
| 0      | 7.7          | 1.                | 6.2          |
| 1      | 3.9          | 2.                | 4.2          |
| 2      | 3.5          | 3.                | 2.1          |
| 3      | 2.8          | All               | 4.8          |



#### Applied genetic parameters for CR

| Heritability |          |                   |  |  |
|--------------|----------|-------------------|--|--|
| Parity       | Holstein | <b>RDC/Jersey</b> |  |  |
| 0            | 0.010    | 0.010             |  |  |
| 1            | 0.025    | 0.020             |  |  |
| 2            | 0.030    | 0.023             |  |  |
| 3            | 0.030    | 0.025             |  |  |

Genetic correlations: Holstein above, and RDC/Jersey below diagonal

|     |      |      |      |      | 4 |
|-----|------|------|------|------|---|
|     | CR0  | CR1  | CR2  | CR3  |   |
| CR0 |      | 0.72 | 0.55 | 0.53 |   |
| CR1 | 0.65 |      | 0.93 | 0.92 |   |
| CR2 | 0.57 | 0.93 |      | 0.96 |   |
| CR3 | 0.47 | 0.84 | 0.95 |      |   |
|     |      |      |      |      |   |

INSTITUTE FINLAND

## Results



# Phenotypic means and distribution of CR observations

| Phenotypic means |          |      |        |  |
|------------------|----------|------|--------|--|
| Parity           | Holstein | RDC  | Jersey |  |
| 0                | 0.59     | 0.58 | 0.57   |  |
| 1                | 0.44     | 0.45 | 0.47   |  |
| 2                | 0.41     | 0.43 | 0.47   |  |
| 3                | 0.40     | 0.42 | 0.46   |  |
| Cows             | 0.42     | 0.44 | 0.47   |  |

- Around 95% of the CR observations were recorded within the:
  - first 3 service for heifers
  - first 4 service for cows
- Phenotypic means and distribution of observations differed among countries



#### Conception rate in heifers Genetic trend for Holstein bulls



INSTITUTE FINLAND



NATURAL RESOURCE

#### Example: EBVs of top 1 progeny tested Jersey bull

| Modelling<br>sexed semen<br>effect | CR0 | CR1 | CR2 | CR3 |
|------------------------------------|-----|-----|-----|-----|
| Included                           | 110 | 102 | 101 | 101 |
| Excluded                           | 107 | 98  | 99  | 99  |



### Summary

- NRR is replaced by CR in Nordic genetic evaluations for female fertility
- Essential to include service number in the CR model
- Modeling sexed semen effect important:
  - Use of sexed semen becomes more popular
  - Biased genetic trends and EBVs if not accounted for
- Genetic trends of CR are improving for all breeds in the Nordic countries



### Thank you!