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Introduction
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Big-data challenges
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Biobank-scale samples

Big N>0.5 million

Sequence variants

Big M>10 million



Recent advances
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• BOLT-REML (MC-EM-REML)

• RHE-reg (Randomized Haseman-Elston regression)
Variance component 

estimation

• BOLT-LMM (χ𝐿𝑀𝑀
2 = 𝑐 ∙ χ𝐿𝑀

2 )

• SAIGE (Like BOLT but better for binary traits)

• GCTA-fastGWA (Sparsifying GRM)
GWAS

• ssGBLUP

• BayesRv2 (One of the fastest MCMC-based)
Genomic prediction



Issues

• χ𝐿𝑀𝑀
2 = 𝑐 ∙ χ𝐿𝑀

2 in BOLT and SAIGE for GWAS
• Correction factor c may have big variation.

• Loss of accuracy in test statistics

• Genomic prediction
• Scalable and accurate Bayesian approaches are lacking.
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Methods
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SNP-set Genomic Prediction (SSGP)
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Mean field approximation
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𝑃 𝒃, 𝒖∙, 𝜎∙
2 𝐷 ≈ 𝑄(𝒃, 𝒖∙, 𝜎∙

2) = 𝑞 𝒃 ෑ

ℎ=1

𝑃

𝑞 𝒖ℎ ෑ

ℎ=1

𝑃

𝑞 𝜎𝑢ℎ
2 𝑞(𝜎𝑒

2)

Consider proximity-based SNP grouping of equal size (S) …
S=1: BayesA
S=M: GBLUP

𝐷KL(𝑄||𝑃) ↓ as S ↑
Prediction accuracy of P may ↑ as S ↓

We want smaller 𝐷KL(𝑄||𝑃) and higher-accuracy P.
A small S may work well for genomic prediction.



Variational inference (VI)
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When variance components 
are not known

Marker effect estimates are 
biased.

When variance components 
are known

VI is equivalent to block-wise 
Gauss-Seidel method.

Marker effect estimates are BLUP.



Association testing
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V=ෑ
ℎ=1

𝑃

𝐾ℎ𝑊𝐾ℎ
′𝜎𝑢ℎ

2 + 𝑅𝜎𝑒
2

χ𝐿𝑀𝑀
2 =

(𝑧′𝑉−1 ෤𝑦)2

𝑧′𝑉−1𝑧

• Note 𝑉−1 ෤𝑦 = 𝑅−1𝜎𝑒
−2 Ƹ𝑒. 

• We compute Ƹ𝑒 by block-wise 
Gauss-Seidel method.

• We compute 𝑉−1𝑧 similarly.

𝑉ℎ = 𝐾ℎ𝑊𝐾ℎ
′𝜎𝑢ℎ

2 + 𝑅𝜎𝑒
2

χℎ
2 =

(𝑧′𝑉−1 ෤𝑦)2

𝑧′𝑉ℎ
−1𝑧

for z in group h.

• χ𝐿𝑀𝑀
2 = 𝑐 ∙ χℎ

2

• S ∈ [1000, 5000]

Fast and accurate 
approximation!



Time complexity

•Scaling linearly in group size
(S), animals (N), and markers
(M)
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Results
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Dairy bull 
data for 
genomic 
prediction
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20K old bulls 
as training

5K young bulls 
as validation

54K SNPs
S=10 and half-
Cauchy prior 
used in SSGP

GCTA-GREML 
and BayesRv2 
as benchmark
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Time with single core on Intel Xeon E5-2680

16

~3 min. by SSGP ~80 min. by BayesRv2



Cow data for GWAS

• 300K cows with yield deviations

• 60K SNPs

• SAIGE as benchmark

• 10K cows randomly sampled from 300K
• 100 replicates

• BFMAP (like EMMAX but 15X faster) as benchmark

• Slope and R2 of lm(𝜒SSGP
2 ~𝜒BFMAP

2 − 1) for 60K SNPs
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Red line: y=x Red line: y=x
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R2Slope

100 replicates 100 replicates
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30 markers 30 markers

SSGPSAIGE

C has big variation 
in SAIGE.

C has little variation 
in SSGP.

R2 = 0.998



Time on MacBook Pro (Intel i9) for 300K cows
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~2.7 hours for GWAS by SSGP >200 hours by SAIGE

Estimating the correction factor is time-consuming. 



Summary

• SSGP can be applied to various types of samples.
• Mostly unrelated, like UK Biobank

• Highly related, like dairy cattle

• Admixed samples

• SSGP is accurate for GWAS and for genomic prediction.

• SSGP is fast.
• 1 million animals and 60K SNPs: <10 hours for GWAS and <5 hours for 

computing SNP effects on standard hardware.

• SSGP can be applied to sequence GWA.
• Reasonable increase in computation compared to linear regression
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Contact

• Jicai Jiang
• jicai.jiang@gmail.com
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Software
• SSGP

• https://sites.google.com/view/ssgp

• BFMAP
• https://jiang18.github.io/bfmap/
• GWA is currently not available in 

the online version.
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