

A scalable Bayesian mixed model approach for GWAS and genomic prediction

Jicai Jiang¹, Li Ma², Paul M. VanRaden³, Jeffrey R. O'Connell¹ ¹University of Maryland School of Medicine, Baltimore, MD ²University of Maryland, College Park, MD ³AGIL-ARS-USDA, Beltsville, MD

2019 Interbull Meeting, Cincinnati, Ohio

Introduction

Big-data challenges

Biobank-scale samples

Big N>0.5 million

Sequence variants Big M>10 million

Recent advances

Variance component estimation	 BOLT-REML (MC-EM-REML) RHE-reg (Randomized Haseman-Elston regression)
GWAS	 BOLT-LMM (χ²_{LMM} = c · χ²_{LM}) SAIGE (Like BOLT but better for binary traits) GCTA-fastGWA (Sparsifying GRM)
Genomic prediction	 ssGBLUP BayesRv2 (One of the fastest MCMC-based)

- $\chi^2_{LMM} = c \cdot \chi^2_{LM}$ in BOLT and SAIGE for GWAS
 - Correction factor *c* may have big variation.
 - Loss of accuracy in test statistics

- Genomic prediction
 - Scalable and accurate Bayesian approaches are lacking.

Methods

SNP-set Genomic Prediction (SSGP)

Mean field approximation

$$P(\boldsymbol{b}, \boldsymbol{u}_{\cdot}, \sigma_{\cdot}^{2} | D) \approx Q(\boldsymbol{b}, \boldsymbol{u}_{\cdot}, \sigma_{\cdot}^{2}) = q(\boldsymbol{b}) \prod_{h=1}^{P} q(\boldsymbol{u}_{h}) \prod_{h=1}^{P} q(\sigma_{u_{h}}^{2}) q(\sigma_{e}^{2})$$

Consider proximity-based SNP grouping of equal size (S) ... S=1: BayesA S=M: GBLUP

> $D_{\mathrm{KL}}(Q||P) \downarrow \text{ as } S \uparrow$ Prediction accuracy of P may \uparrow as $S \downarrow$

We want smaller $D_{\text{KL}}(Q||P)$ and higher-accuracy *P*. A small *S* may work well for genomic prediction.

Variational inference (VI)

When variance components are not known

Marker effect estimates are biased.

When variance components are known

VI is equivalent to block-wise Gauss-Seidel method.

Marker effect estimates are **BLUP**.

Association testing

$$V = \prod_{h=1}^{P} K_h W K'_h \sigma_{u_h}^2 + R \sigma_e^2$$
$$\chi^2_{LMM} = \frac{(z'V^{-1}\tilde{y})^2}{z'V^{-1}z}$$

- Note $V^{-1}\tilde{y} = R^{-1}\sigma_e^{-2}\hat{e}$.
- We compute \hat{e} by block-wise Gauss-Seidel method.
- We compute $V^{-1}z$ similarly.

$$V_h = K_h W K'_h \sigma_{u_h}^2 + R \sigma_e^2 \qquad \bullet \quad \chi^2_{LMM} = c \cdot \chi^2_h$$

$$\chi_h^2 = \frac{(z'V^{-1}\tilde{y})^2}{z'V_h^{-1}z} \text{ for } z \text{ in group } h.$$

Fast and accurate approximation!

Time complexity

Scaling linearly in group size
 (S), animals (N), and markers
 (M)

Results

Dairy bull data for genomic prediction

20K old bulls as training

5K young bulls as validation

54K SNPs

S=10 and half-Cauchy prior used in SSGP

GCTA-GREML and BayesRv2 as benchmark

Time with single core on Intel Xeon E5-2680

~80 min. by BayesRv2

 (\square)

Cow data for GWAS

- 300K cows with yield deviations
- 60K SNPs
- SAIGE as benchmark
- 10K cows randomly sampled from 300K
 - 100 replicates
 - BFMAP (like EMMAX but 15X faster) as benchmark
 - Slope and R^2 of $Im(\chi^2_{SSGP} \sim \chi^2_{BFMAP} 1)$ for 60K SNPs

Chromosome

Time on MacBook Pro (Intel i9) for 300K cows

~2.7 hours for GWAS by SSGP

>200 hours by SAIGE

Estimating the correction factor is time-consuming.

Summary

- SSGP can be applied to various types of samples.
 - Mostly unrelated, like UK Biobank
 - Highly related, like dairy cattle
 - Admixed samples
- SSGP is accurate for GWAS and for genomic prediction.
- SSGP is fast.
 - 1 million animals and 60K SNPs: <10 hours for GWAS and <5 hours for computing SNP effects on standard hardware.
- SSGP can be applied to sequence GWA.
 - Reasonable increase in computation compared to linear regression

Acknowledgements

• Funding NHLBI U01 HL137181-01

Software

- SSGP
 - https://sites.google.com/view/ssgp
- BFMAP
 - https://jiang18.github.io/bfmap/
 - GWA is currently not available in the online version.

Contact

- Jicai Jiang
 - jicai.jiang@gmail.com