Using the new ARS-UCD1 reference map in US genomic predictions

Dan Null^{1*}, Derek Bickhart², Paul VanRaden¹, John Cole¹, Jeff O'Connell³, and Ben Rosen¹

AGIL – VanRadei

¹Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, USA

- ² Cell Wall Biology and Utilization Research , ARS, USDA, Madison, WI, USA
- ³ University of Maryland School of Medicine, Baltimore, MD, USA
- Email: daniel.null@ars.usda.gov

```
Web site: https://aipl.arsusda.gov/
```

Topics

- Strategies to liftover SNP locations from one map to another
- Compare previous UMD3 map to new ARS-UCD1 map
 - Imputation results from 5 breeds (HOL, JER, BSW, RDC, GUE)
 - Editing SNPs from potentially mismapped regions
 - Inheritance and consistency of haplotypes across generations
- US implementation of the ARS-UCD1 map
- Further research with HD or sequence data

Liftover: Converting locations to a different map

- Each chromosome may be longer or shorter than previous assembly
 - Autosomes range from -4.3% shorter (chr12) to 0.6% longer (chr26)
 - X chromosome 6.6% longer than UMD3, with more distinct PAR
- Many insertions, deletions, inversions, translocations, SNPs vs. UMD3
 - Official liftover tool developed by the UCSC Genome Browser (scaffolds)
 - Use probe from manifest or flanking sequence, align to new map
 - Simulate paired end reads from old map, align to new map (very fast)
 - Use partial matches within a single chromosome

Liftover of SNP locations

- Probes used for genotyping SNPs on arrays
 - A 50-base sequence extended to the right or left of SNP, such as

 - Where was this located on the old map?
 - Where is this located on the new map?
- File of new SNP locations provided by Bob Schnabel (U Missouri)
 - https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/
 - Liftover of other SNPs not on manifests was done at AGIL

SNPs now located on different chromosomes

ISDA

AGIL – VanRaden

Whole Genome

Switching from UMD3 to ARS-UCD1 map

- Better assembly of Dominette DNA using longer reads
- UMD3: Zimin et al. 2009 Genome Biology 10:R42
- ARS-UCD1: Rosen et al. 2018 WCGALP, vol. Molecular Genetics 3, p. 802
 - https://www.ncbi.nlm.nih.gov/assembly/GCA_002263795.2/
 - Annotation (gene structure) released by NCBI in May 2018
 - Also used for 1000 Bull Genomes Project Run7 in 2019
- Edited versions used by AGIL after mis-mapped SNPs removed

PAR-X comparison

Imputation tests

- Locations for the 60,367 usable SNPs were converted to ARS-UCD1
- Genotypes were imputed to 60K from 30 chips of differing density
- Genotypes from 5 breeds were imputed separately:
 - 1,748,453 Holsteins (HO)
 - 215,800 Jerseys (JE)
 - 32,724 Brown Swiss (BS)
 - 4,834 Ayrshires (AY)
 - 3,517 Guernseys (GU)

60K Imputation results – 1: Inheritance rate

Haplotypes with parent-progeny noninheritance (%)

Breed	UMD3	ARS-UCD1				
	edited	original	edited			
HOL	1.6	1.3	1.1			
JER	4.3	3.9	3.8			
BSW	1.5	1.3	1.2			
RDC	1.8	1.5	1.4			
GUE	1.6	1.4	1.3			

Maximum non-inheritance within any haplotype (%)

Breed	UMD3	ARS-UCD1				
	edited	original	edited			
HOL	13	31	12			
JER	25	35	18			
BSW	17	21	10			
RDC	16	27	10			
GUE	18	16	9			

60K Imputation results – 2: Maximum haplotypes

Maximum number of haplotypes per segment

Breed	UMD3	ARS-UCD1				
	edited	original	edited			
HOL	47,987	81,316	36,690			
JER	39,628	33,034	29,732			
BSW	11,602	12,846	9,447			
RDC	2,030	2,512	1,606			
GUE	1,970	1,657	1,427			

- Haplotype counts and inheritance improved for all breeds
- Much better on the X chromosome and its pseudoautosomal region
- Further edits used HD data to identify smaller regions potentially mismapped

Imputation for published gene tests / haplotypes

- The new map more cleanly separated truly lethal haplotypes from false candidate haplotypes.
- Gene tests were added within previously published haplotypes:
 - Added HH0, HH3, HH4, Red, Black/Red, Dominant Red, BH2, AH1, AH2.
 - HH1, JH1, BLAD, CVM, DUMPs, Mulefoot, SDM, SMA, and Weaver were already included in previous 60K list. Some of these were progeny tests.
- The added gene tests tended to identify more carrier animals.
- For most haplotypes >99% of animals maintained the same status.

Implementation steps

- Converted UMD3 locations to ARS-UCD1 SNP locations
 - Detected a few SNPs with different names, locations actually were same
 - Detected a few SNPs with different locations, but names were the same
- Increased usable SNP list from 60K to 80K (Wiggans ADSA talk)
- Imputed genotypes for all breeds and crossbreds
- Checked published haplotypes to ensure proper inheritance
- Obtained prior allele effect estimates for all breeds, traits, and BBR
- Implemented during the December 2018 full release

Published gene tests / haplotypes - HOL

Test	Same	Change	d to:	Freq
	(%)	Carrier	Non-C	(%)
ННО	99.8	0.17	0.05	3.2
HH1	99.7	0.24	0.05	2.6
HH2	99.3	0.71	0.02	2.6
HH3	99.5	0.46	0.03	4.6
HH4	99.9	0.02	0.01	0.5
HH5	98.2	1.69	0.15	6.2
HH6	New			0.5

Test	Same	Changed	to:	Freq
	(%)	Carrier	Non-C	(%)
BLAD	99.9	0.03	0.05	0.2
CVM	99.1	0.68	0.14	1.9
DUMPS	100.0	0.00	0.00	<0.1
MuleFt	99.9	0.02	0.01	0.1
Polled	99.2	0.57	0.18	3.8
Red	97.1	1.33	1.53	9.4
Blk/Red	99.7	0.21	0.08	1.2
DomRed	99.9	0.03	0.00	0.2
HCD	99.1	0.26	0.61	5.9

Published gene tests / haplotypes – Other breeds

Test	Same	Change	Freq		
	(%)	Carrier	Non-C	(%)	
BSW:					
BH2	99.4	0.42	0.20	13.3	
SDM	98.7	0.92	0.37	3.0	
SMA	99.3	0.66	0.06	4.0	
Polled	99.6	0.07	0.31	2.5	
Weaver	99.9	0.07	0.06	1.2	

Test	Same	Changed	Freq	
	(%)	Carrier	Non-C	(%)
JER:				
JH1	98.4	1.27	0.29	18.4
JHP	99.0	0.17	0.79	4.1
RDC:				
AH1	98.2	1.55	0.23	22.2
AH2	99.0	0.69	0.35	21.0

HD Imputation results – 1: Inheritance rate

Haplo	otypes with pa noninheritan	rent-progeny ce (%)	Maxin	Maximum non-inheritance within any haplotype (%)				
	ARS-	UCD1		ARS-L	JCD1			
Breed	60K edits HD edits		Breed	60K edits	HD edits			
HOL	3.0	2.9	HOL	48	18			
JER	3.9	4.9	JER	47	22			
BSW	2.3	2.2	BSW	30	17			
RDC	2.4	2.4	RDC	37	18			
GUE	1.5	1.4	GUE	27	13			

Check SNP correlation problems using heat maps

End of chromosome 29

Before HD edits

After HD edits

37% Non-inheritance

4% Non-inheritance

Interbull annual meeting, Cincinnati, OH, June 22-23, 2019 (16)

Potentially mismapped sections edited

AGIL – VanRaden

Potentially mismapped sections edited

_	Mismapped Region Mism		napped Region		Mismapped Region						
	Starting	Ending			Starting	Ending			Starting	Ending	
Chromosome	Location	Location	Size (Mb)	Chromosome	Location	Location	Size (Mb)	Chromosome	Location	Location	Size (Mb)
1	88,288,254	88,589,699	0.30	10	23,703,142	25,059,514	1.36	21	58,940,778	59,023,509	0.08
1	157,525,745	159,000,000	1.47	10	42,156,286	42,292,668	0.14	23	21,510,406	21,737,841	0.23
2	121,316,059	121,751,997	0.44	11	26,412,888	26,626,298	0.21	24	62,162,854	63,000,000	0.84
3	119,378,630	119,559,889	0.18	11	82,836,074	83,006,400	0.17	25	13,347,316	13,376,441	0.03
4	1,336,110	1,417,557	0.08	12	70,762,931	71,197,493	0.43	26	14,965,770	14,988,648	0.02
6	35,300,301	35,344,991	0.04	14	1	146,714	0.15	26	15,079,004	15,241,107	0.16
6	112,109,597	112,324,326	0.21	14	82,285,783	82,366,657	0.08	26	25,236,723	25,297,707	0.06
7	8,433,502	9,956,060	1.52	15	10,979,970	11,040,240	0.06	26	25,495,761	25,798,796	0.30
7	41,323,000	41,434,573	0.11	15	83,996,174	86,000,000	2.00	27	1	139,701	0.14
7	68,528,026	68,619,931	0.09	17	68,078,456	68,217,960	0.14	28	45,859,111	46,000,000	0.14
8	1	234.625	0.23	18	63.017.258	63.135.541	0.12	29	50.977.673	52.000.000	1.02
0	112 006 502	112 272 051	0.19		71 950 046	72 000 000	0.15		96.006.007	97 025 672	0.04
8	113,030,532	113,273,051	0.18	20	/1,850,046	72,000,000	0.15	31	00,330,30 <i>1</i>	01,035,072	0.04
9	104,172,188	104,634,958	0.46	21	1	454,527	0.45				

AGIL – VanRaden

Conclusions

- The ARS-UCD map fixes many defects in the UMD3 map
- Mis-mapped regions of UMD3 are now usable on ARS-UCD
- The new map has several better properties than previous:
 - Marker locations, genotype imputation, haplotype inheritance, sequence alignment, and gene annotation
- ARS-UCD1 map used in U.S. genomic evaluations since Dec 2018
- ARS-UCD1 map used in 1000 Bull Genomes run7 sequence data files delivered in 2019

Acknowledgments

- USDA-ARS project 1265-31000-101-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information" (AGIL funding)
- Council on Dairy Cattle Breeding (CDCB) and its industry suppliers for data

