

Improving the genetic evaluation for longevity in the Netherlands

Mathijs van Pelt

Gerben de Jong Roel Veerkamp

August 27, 2017

Aim

- Set up new genetic evaluation for longevity
- Compare with current genetic evaluation

Genetic parameters

New

- Linear random regression model
- Animal model
- Different trait across cow's life

MND	6	12	18	24	30	36	42	48	54	60	66	72
6	1.0	1.0	0.9	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.1	0.1
12	1.0	1.0	0.9	0.7	0.6	0.6	0.5	0.4	0.3	0.2	0.1	0.1
18	0.9	0.9	1.0	1.0	0.9	8.0	0.8	0.7	0.6	0.6	0.5	0.5
24	0.7	0.7	1.0	1.0	1.0	1.0	0.9	0.9	8.0	8.0	0.7	0.7
30	0.6	0.6	0.9	1.0	1.0	1.0	1.0	0.9	0.9	8.0	8.0	0.8
36	0.5	0.6	0.8	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9
42	0.4	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9
48	0.3	0.4	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	0.9	1.0
54	0.2	0.3	0.6	8.0	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0
60	0.1	0.2	0.6	8.0	8.0	0.9	0.9	1.0	1.0	1.0	1.0	1.0
66	0.1	0.1	0.5	0.7	8.0	0.9	0.9	0.9	1.0	1.0	1.0	1.0
72	0.1	0.1	0.5	0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0

- $h^2 = 0.12$
- Gen.SD = 7.1 mo

Current

- Proportional hazards model
- Sire-mgs model
- Same trait across cow's life

MND	6	12	18	24	30	36	42	48	54	60	66	72
6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
12	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
18	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
24	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
30	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
36	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
42	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
48	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
54	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
60	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
66	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
72	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

- $h^2 = 0.12$
- Gen.SD = 9.0 mo

Statistical model

Random regression animal model

$$Y = X\beta + Za + e$$

- Y = Survival per month after first calving (month 1 72)
- β = Fixed effects
 - 1. Herd-year-season x lactation-stage
 - 2. Year-season x AFC x prod x lactation-stage
 - 3. Herdsize change
 - 4. Heterosis
 - 5. Recombination
- **a** = Additive genetic effect, 5th order Legendre polynomial
- e = Residual

- Year-season of calving
- Lactation: 1, 2, 3+ for 1. and 1, 2, 3, 4, 5+ for 2.
- Stage: month 1-2, 3-9, 10+ and dry period
- AFC: age at first calving in months: 21, 22,...,34, 35+
- Prod: within-herd production level, 5 classes of 20%

Correlation between total life (1-72 mo) and accumulated intervals

Comparison of new with current genetic evaluation

One run per year from 2007 to 2017

- Compared on:
 - Reliability
 - Mean difference with latest EBV (2017)
 - Genetic correlations between EBV (2007 to 2017)
 - Genetic trends (2008, 2012, 2016)
- For first crop and second crop bulls
 - With first EBV in 2007 or later

Reliability per birthyear

Difference of nth run of bull with latest EBV for first crop bulls

Difference of nth run of bull with latest EBV for second crop bulls

Genetic trends

Correlations between first EBV and later EBV

	F	irst crop bul	ls
EBV run	current	new	difference
1	1.00	1.00	0.00
2	0.83	0.86	+0.03
3	0.75	0.77	+0.03
4	0.68	0.73	+0.05
5	0.65	0.72	+0.07
6	0.63	0.71	+0.09
7	0.61	0.71	+0.10
8	0.59	0.70	+0.12
9	0.58	0.70	+0.12
10	0.59	0.69	+0.10
11	0.63	0.71	+0.08

Correlations between runs higher with **new** → less reranking

Presentation of new breeding value

- Current EBV is for productive longevity
 - New EBV should be comparable with current EBV
- Expand EBV based on 72 months to total life
 - Same ranking
- Convert EBV from functional to productive longevity
- Add predictor traits
 - To increase reliability
- Correlation current EBV publishable EBV ~0.90

Conclusions

New genetic evaluation for longevity

- Multiple traits across cow's life
- Improved calculation of reliability
 - Information of living animals is also used
- Smaller overestimation of 1st EBV
 - More stable EBV from run to run
- Less reranking

Thank you for your attention!

Description of compared test/proven bulls

	Tes	st bulls	Proven bulls		
EBV run	# bulls	# daughters	# bulls	# daughters	
1	2378	97	263	149	
2	2152	123	255	344	
3	1953	126	235	436	
4	1769	127	203	511	
5	1567	126	170	1051	
6	1341	125	139	2347	
7	1284	125	111	3611	
8	1089	124	88	4572	
9	847	126	61	4372	
10	573	134	44	4806	
11	290	140	21	5525	

