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Background

B [mputation is well understood & is used in routine evaluation
= |mputation of different chip densities to a common size

= |mputation of genetic traits

B Two different approaches are currently used
= Pedigree based imputation (e.g., Findhap or FImpute)

= Population based imputation (e.g, Beagle)

In times of artificial intelligence, deep learning & machine learning methods

are becoming more and more popular
Sometimes give outstanding results, in contrast to “traditional models”

Aim of the study: Investigate the imputation accuracy for genetic
characteristics using deep/machine learning methods
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Materials & Methods
Genetic characteristics
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Materials & Methods - u/n
SNP data VIt -

® Number of animals per chip (polled)

Chip # SNPs on # animals for # animals for
chip training validation
EuroG10K V4 11,490 34,632 -
EuroG10K V5 13,787 130,637 -
EuroG10K V7 13,329 164,418 -
EuroG10K V8 13,674 76,126 16,739
EuroG MD 49,331 5,259 16,588

B [mputation from LD to 50K done with FImpute
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Materials & Methods o
Datasets VIt

CD Kappa HH3 Polled
Casein

No. of training animals 242,600 428,974 406,867 406,250

No. of validation 33,292 33,873 33,275 33,289
animals (born 2019)

Minor allele frequency  2.40 34.84 2.52 4.88
training (%)

Minor allele frequency  1.80 39.89 1.91 7.07
validation (%)
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Materials & Methods 't\fé
Development of allele frequencies for the different traits VIU :::
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Materials & Methods
Frameworks

B Beagle
Genetic optimized algorithm using population based information

B Keras

Version 1398
20 imputation & phase-lterations
20 threads

Tensorflow backend

input: | (None, 200)

InputLayer

output: | (None, 200)

vit ::

Callbacks: — o [
n Ea rIy Stopping output: | (None, 1024)

" C h e C k p O i n t BatchNormalization input:_| (None, 1024)

output: | (None, 1024)

20 threads

input: | (None, 1024)

Activation

output: | (None, 1024)

/

.

Keras model plot for polled

input: | (None, 1024)

Dense

output: (None, 3)

input: | (None, 1024)

Dense

output: (None, 3)

input: | (None, 1024)

Dense

output: (None, 3)

A

input: | (None, 3)

Activation

output: | (None, 3)

Activation

input: | (None, 3)

output: | (None, 3)

Activation

input: | (None, 3)

output: | (None, 3)
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Frameworks V|t E:E

® LightGBM
= fast gradient boosting decision tree algorithm

= max. 20,000 weak learners (boosted trees) with early stopping
= learning_rate=0.02
= num_leaves=8 (max. number of leaves for a tree)

= colsample_bytree=0.3: ratio of used features for each tree, e.g., to reduce
overfitting

= 20 threads

® Ensemble
= y weighted pred = (0.5 *y pred Igbm) + (0.5 *y _pred_keras)

B Measure of Accuracy: Correlation between imputed and true genotypes

E R RN
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Results V i t‘\;:c?

Computation time and accuracy for different traits and methods

Trait Computation time (h) Accuracy (%)

Beagle Keras LGBM Ens. Beagle Keras LGBM Ens.

Polled 3:39 0:03 0:02 0:05 98.70 98.75 98.80 98.87

CD 8:41 0:03 0:02 0:05 9490 96.51 96.73 97.14
HH3 4:05 0:02 0:01 0:03 98.86 99.10 99.35 99.47

Kappa 6:15 0:03 0:08 0:11 9958 9955 9958 99.60
Casein
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Results oy
Relationship between accuracy & size of the training dataset VIU :::
(polled)
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Results

@ /a

Accuracy of validation by their relationship to the reference V|t -
population (polled)

Presence of relatives in training Beagle  Keras LGBM

population

Sire & dam (n=10,035) 99.28 99.58 99.00

Only dam (n=16,764) 99.22 99.32 99.24

Only sire (n=19,136) 99.10 99.44 99.02

Neiter sire nor dam (n=16,525) 98.36 98.30 98.64

All (n= 33,289) 98.70 98.75 98.80
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Conclusion V|t -

B Accuracy improved by using deep or machine learning algorithms instead of
Beagle

B Computation time decreased drastically
B Combination of lightGBM & keras had the highest accuracy
B Large data sizes are needed to outperform existing methods

B Close relatives in training population is important for all frameworks
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Outlook

B Deep and machine learning frameworks have great potential for animal

breeding
= |mputation

= New phenotypes
= Sensor data

= |[mages

= MIR Spectra analysis

Data anomaly detection (plausability data checks)

B Limit potential for breeding value estimation
= Linearity
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