

IT-Solutions for Animal Production

Imputation of genetic characteristics using deep learning methods

D. Segelke, Lilian Gehrke & Jan Wabbersen

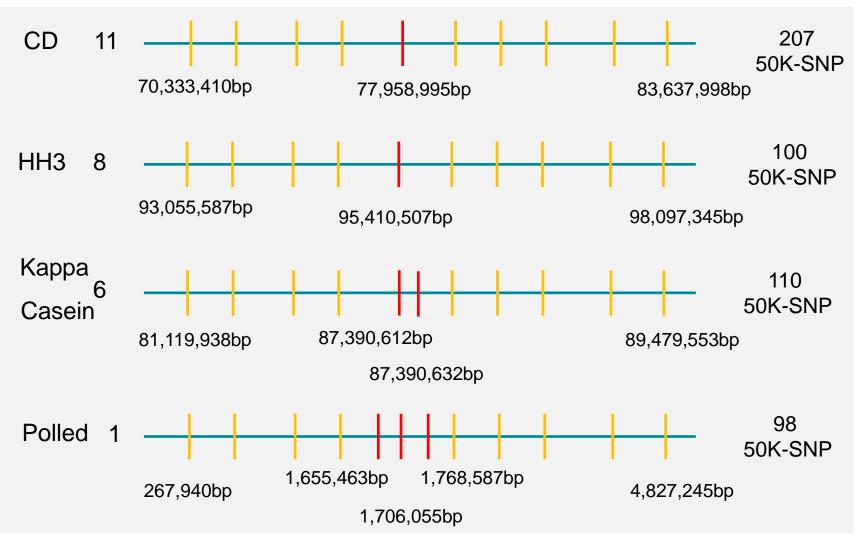
Dierck.Segelke@vit.de

Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden/Germany

Background

- Imputation is well understood & is used in routine evaluation
 - Imputation of different chip densities to a common size
 - Imputation of genetic traits
 - Two different approaches are currently used
 - Pedigree based imputation (e.g., Findhap or FImpute)
 - Population based imputation (e.g, Beagle)
- In times of artificial intelligence, deep learning & machine learning methods are becoming more and more popular
 - Sometimes give outstanding results, in contrast to "traditional models"
- Aim of the study: Investigate the imputation accuracy for genetic characteristics using deep/machine learning methods

Materials & Methods Genetic characteristics



Materials & Methods SNP data

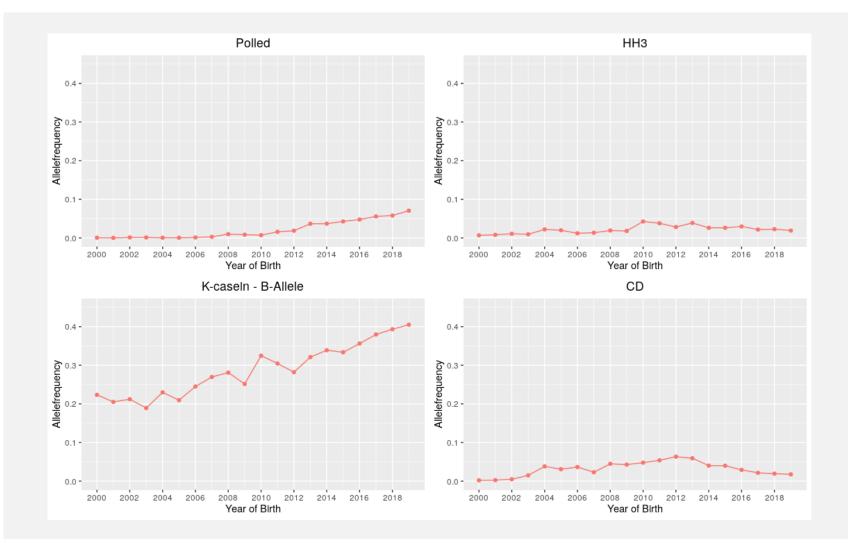
Number of animals per chip (polled)

Chip	# SNPs on chip	# animals for training	# animals for validation
EuroG10K V4	11,490	34,632	-
EuroG10K V5	13,787	130,637	-
EuroG10K V7	13,329	164,418	-
EuroG10K V8	13,674	76,126	16,739
EuroG MD	49,331	5,259	16,588

Imputation from LD to 50K done with FImpute

	CD	Kappa Casein	HH3	Polled
No. of training animals	242,600	428,974	406,867	406,250
No. of validation animals (born 2019)	33,292	33,873	33,275	33,289
Minor allele frequency training (%)	2.40	34.84	2.52	4.88
Minor allele frequency validation (%)	1.80	39.89	1.91	7.07

Materials & Methods Development of allele frequencies for the different traits



28 June 2019

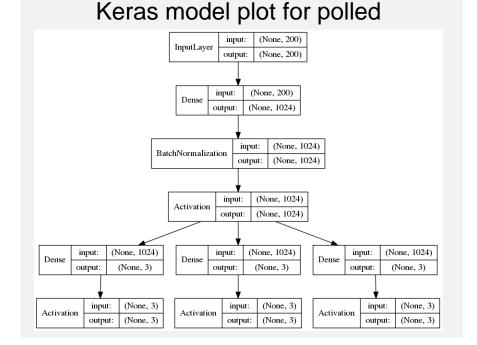
Materials & Methods Frameworks

Beagle

- Genetic optimized algorithm using population based information
- Version 1398
- 20 imputation & phase-Iterations
- 20 threads

Keras

- Tensorflow backend
- Callbacks:
 - Early stopping
 - Checkpoint
- 20 threads



Frameworks

- LightGBM
 - fast gradient boosting decision tree algorithm
 - max. 20,000 weak learners (boosted trees) with early stopping
 - learning_rate=0.02
 - num_leaves=8 (max. number of leaves for a tree)
 - colsample_bytree=0.3: ratio of used features for each tree, e.g., to reduce overfitting
 - 20 threads
- Ensemble
 - y_weighted_pred = (0.5 * y_pred_lgbm) + (0.5 * y_pred_keras)

Measure of Accuracy: Correlation between imputed and true genotypes

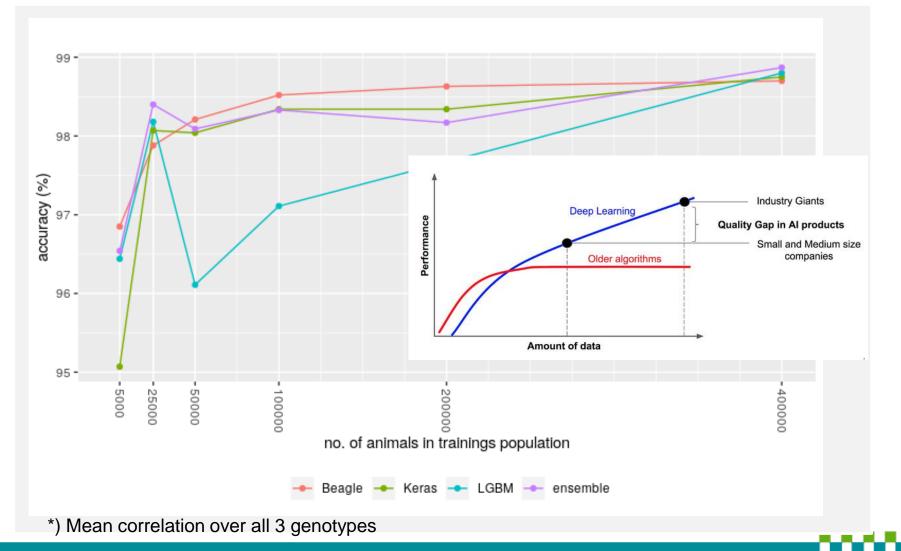
vit

Results Computation time and accuracy for different traits and methods

Trait	Computation time (h)			Accuracy (%)				
	Beagle	Keras	LGBM	Ens.	Beagle	Keras	LGBM	Ens.
Polled	3:39	0:03	0:02	0:05	98.70	98.75	98.80	98.87
CD	8:41	0:03	0:02	0:05	94.90	96.51	96.73	97.14
HH3	4:05	0:02	0:01	0:03	98.86	99.10	99.35	99.47
Kappa Casein	6:15	0:03	0:08	0:11	99.58	99.55	99.58	99.60

Results

Relationship between accuracy & size of the training dataset (polled)



Results

Accuracy of validation by their relationship to the reference population (polled)

Presence of relatives in training population	Beagle	Keras	LGBM
Sire & dam (n=10,035)	99.28	99.58	99.00
Only dam (n=16,764)	99.22	99.32	99.24
Only sire (n=19,136)	99.10	99.44	99.02
Neiter sire nor dam (n=16,525)	98.36	98.30	98.64
All (n= 33,289)	98.70	98.75	98.80

Conclusion

- Accuracy improved by using deep or machine learning algorithms instead of Beagle
- Computation time decreased drastically
- Combination of lightGBM & keras had the highest accuracy
- Large data sizes are needed to outperform existing methods
- Close relatives in training population is important for all frameworks

Outlook

- Deep and machine learning frameworks have great potential for animal breeding
 - Imputation
 - New phenotypes
 - Sensor data
 - Images
 - MIR Spectra analysis
 - Data anomaly detection (plausability data checks)
 - Limit potential for breeding value estimation
 - Linearity

Thank you for attendance!