Efficient computation of base generation allele frequencies

11 February; Interbull meeting, Auckland, New Zealand

Michael Aldridge, Jeremie Vandenplas & Mario Calus

Allele frequencies in genomic prediction

Genomic prediction requires allele frequencies (AF)

Commonly, AF are current data averages

Theoretically, AF should be computed for the base generation

Base generation AF

Base generation = base generation in pedigree!

Base generation AF required for calculation of:

- Genomic relationships in (single-step) GBLUP
- Model-based reliabilities for multi-step genomic evaluations
- Computation of relationships among metafounders¹

¹Legarra, A., O. F. Christensen, Z. G. Vitezica, I. Aguilar, and I. Misztal. 2015. *Genetics*. 200:455-468.

Compare accuracy and efficiency

of different methods to compute

base generation allele frequencies

Methods – overview

• AF:
$$p = \frac{1}{2}\hat{\mu}$$

Method	Mean is estimated:
All	Across all genotypes
Oldest	Across oldest generation genotyped
BLUP	In BLUP model
GLS	General Least Squares (GLS)

Methods - BLUP

BLUP model; y = genotype (0,1,2)

h²=0.99; allowing some genotyping error

Univariate; or multivariate with zero genetic correlations

Implemented using MiXBLUP

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367. Gengler, N., P. Mayeres, and M. Szydlowski. 2007. Animal. 1:21-28.

Methods – GLS (dense / sparse)

• GLS: $\hat{\mu}_i = (\mathbf{1}' \mathbf{A}_{22}^{-1} \mathbf{1})^{-1} \mathbf{1}' \mathbf{A}_{22}^{-1} \mathbf{Z}_i$

Dense: Compute and invert A₂₂

• Sparse:
$$A_{22}^{-1}1 = (A^{22} - A^{21}(A^{11})^{-1}A^{12})1$$

Own program / Intel MKL-PARDISO

WAGENINGEN UNIVERSITY & RESEARCH

McPeek, M. S., X. D. Wu, and C. Ober. 2004. Biometrics. 60:359-367.

Garcia-Baccino, C.A., Legarra, A., Christensen, O.F., Misztal, I., Pocrnic, I., Vitezica,

Z.G., and Cantet, R.J. 2017. Genet. Sel. Evol. 49, 34.

Data (simulation)

- Holstein-like population
- Generations 9 to 12 (after base) fully genotyped
- 325,266 animals in pedigree; 100,078 genotyped
- 1670 SNPs (providing replication)
- Selection: None or Strong

Change in AF across generations (with selection)

9

Results - accuracy

Method	Without selection	With selection
All	0.99 ± 0.01	0.87 ± 0.01
Oldest	0.99 ± 0.01	0.88 ± 0.01
BLUP	0.99 ± 0.01	0.96 ± 0.01
GLS_dense	0.99 ± 0.01	0.97 ± 0.01
GLS_sparse	0.99 ± 0.01	0.97 ± 0.01

Results - efficiency

Method	Process time	RAM
AII	0-00:03:44	7.8 GB
Oldest	0-00:01:19	1.6 GB
BLUP (60 SNPs)	0-13:42:17	49.0 GB
GLS_dense	50-20:12:16	165.9 GB
GLS_sparse	0-00:01:28	2.6 GB

=> Efficiency of GLS_sparse is very competitive!

Discussion

- Few GLS_sparse estimates outside 0-1 range:
 - Only for very low MAF < 0.001
 - Swapping allele code solved most of those

- Estimates were not affected when having:
 - 2% genotyping errors
 - 25% of sires unknown

Conclusions

- Base generation AF required for:
 - Genomic relationships in (single-step) GBLUP
 - Model-based reliabilities for multi-step genomic evaluations
 - Computation of relationships among metafounders

- GLS_sparse estimator recommended
 - Accurate & very efficient

Acknowledgements

HENDRIX GENETICS TOPIGS NORSVIN PROGRESS IN PIGS

