

UNIVERSITÀ DEGLI STUDI DI PADOVA

World Congress on Genetics Applied to Livestock Production Aotea Centre Auckland, New Zealand, 11–16 February 2018

Exploiting the network-based association weight matrix approach for the genetic dissection of milk nitrogen fractions in dairy cattle

S. Pegolo^{1*}, N. Mach², Y. Ramayo-Caldas^{2,3}, A. Rossoni⁴, <u>E. Santus⁴</u>, G. Bittante¹ & A. Cecchinato¹

 ¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
² UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
³ Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, 08140, Spain
⁴Italian Brown Breeders Association, Loc. Ferlina 204, Bussolengo 37012, Italy

Dr. Enrico Santus

*Corresponding author: sara.pegolo@unipd.it

Background

Aim of the study

Deeper knowledge about genetic regulation of the physiological and cellular mechanisms required for milk protein synthesis and secretion

Methods

(DIM, parity, herd as fixed factors, P<5*10⁻⁵ (Genabel R package)

 Milk samples from 1,011 Brown Swiss cows (Cowability project)
37,568 SNPs (Illumina Bovine SNP50)
Milk N composition (caseins, whey proteins, non-prot N)

Pathway analysis SNP selection: SNP-to-gene distance <15 kb, P<0.05 (*BiomaRt R package*) Gene-set enrichment GO and KEGG databases, FDR<0.05 (*goseq R package*)

Gene-network analysis

NIVERSITĂ

Methods - AWM construction

SNP selection criteria from GWAS:

- ✓ Selection of key phenotype (κ-CN)
- ✓ Primary SNP selection: P≤0.05 for κ-CN
- ✓ Secondary SNP selection: SNPs with P ≤0.05 in ≥3 non- key phenotypes
- ✓ SNP-to-gene distance: <10 kb</p>
- ✓ One SNP-One Gene: 1) >n° phenotypes; 2) lowest P-val

PCIT algorithm

(Partial correlations - Information Theory)

r ≥|0.80|

Biologically relevant interactions and key regulators

(Cluego, NetworkAnalyzer, IPA)

Results – GWAS

<u>**170 SNPs:</u></u> 103 SNPs on BTA6** (~77.19-99.45 Mbp, including casein cluster); **22** SNPs on **BTA11** (~101.27 - 106.54 Mbp, including the *PAEP* gene)</u>

Heritability estimations are in general high Heritability for casein fractions are higher than total casein

Results – GWAS and pathway analysis

37000 SNPs

13000 genes

17000 SNPs btw 15Kb (flanking)

PATHWAY ANALYSIS

600 genes with significant associations with MY or PROT

Results – GWAS and pathway analysis

PATHWAY ANALYSIS

KEGG:4970_Salivary secretion KEGG:4360 Axon guidance KEGG:5410_Hypertrophic cardiomyopathy (HCM) KEGG:5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) KEGG:5414_Dilated cardiomyopathy

B-CN

S

Zmin

Results – Network analyses

452 genes (24% of genes in the filtered AWM)

Results - Functional analyses

Conclusions

- Genetic control of milk protein composition
- ✓ Mammary gland functionality
- ✓ GFI1B, NR5A1 and ZNF407 as key regulators

Selection strategies to improve milk quality and technological characteristics

Thank you for your attention!

