Validation of genomic reliability and gains from phenotypic updates

Paul VanRaden and Jeff O'Connell*

Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA, Beltsville, MD *University of Maryland-Baltimore paul.vanraden@ars.usda.gov

Topics

- Methods to compute genomic reliability
 - Summarized by Liu et al (2017)
 - GREL compared by Sullivan and Jakobsen (2014)
- Simple validation of genomic reliability
 - Do actual EBV changes agree with published REL?
 - Examples from USA and Intergenomics
- Gains in reliability from more frequent updates
 - Similar math can determine the value of re-estimating marker effects more often

REL calculation vs. validation

• REL estimation

- Adjust theoretical REL such as from SNP-BLUP-REL or from size of reference population
- Use prediction error variance (PEV) because correlations are biased downward by selection
- REL validation
 - Similar to validating EBVs using truncated data
 - Examine published REL for 6 traits and Net Merit
 - Examine 3 breeds (HOL, JER, BSW) on USA scale

Genomic reliability theory

- Selection reduces variance such that Var(EBV) < REL * Var(BV), but not prediction error variances (PEV):
- PEV = Var(EBV BV) = (1 REL) Var(BV)
- Variance of EBV differences are proportional to the difference in reliabilities regardless of selection. If EBV₁ and EBV₂ are earlier and later genomic evaluations with reliabilities REL₁ and REL₂, then
- $Var(EBV_2 EBV_1) = (REL_2 REL_1) Var(BV)$
- If REL₂ is known, high, and accurate, then solve for
- $REL_1 = REL_2 Var(EBV_2 EBV_1) / Var(BV)$

Data to validate genomic reliability

- Published genomic evaluations from April 2014
- Published genomic evaluations from April 2017
- SD of difference in genomic PTAs
- REML estimates of true TA SD from Interbull MACE
- Example for Holstein protein validation bulls:
- Average published REL₁ was 0.76, REL₂ was 0.95, SD of change was 8.4, and REML TA SD was 17.5. The observed REL₁ for protein was calculated as
- Observed $REL_1 = 0.95 (8.4)^2 / (17.5)^2 = 0.72$

Observed vs. published reliability, 2014

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Jerseys			Holsteins			
Milk	73	68	+5	72	76	-4	
Fat	72	68	+4	74	76	-2	
Protein	71	68	+3	72	76	-4	
Longevity	47	55	-8	65	70	-5	
SCS	64	62	+2	77	73	+4	
Preg Rate	63	52	+11	69	68	+1	
NetMerit	68	64	+4	68	73	-5	
Average	65	62	+3	71	73	-2	

Observed vs. published reliability, BSW

Trait	Observed	Published	Diff	Observed	Published	Diff	
	Brown Swiss - USA			BSW - Intergenomics			
Milk	62	63	-1	70	68	+2	
Fat	64	63	+1	76	68	+8	
Protein	57	63	-6	66	68	-2	
Longevity	57	55	+2	63	61	+2	
SCS	64	59	+6	71	66	+5	
Preg Rate	56	51	+5	67	58	+9	
Average	60	59	+1	69	65	+4	

Discussion of BSW results

- Same software used by USA and Intergenomics
- Same data except PA in USA vs. Pedigree Index in IG
 - Bias from dam's PTA and extra weight on PA
 - Yield heritability reduced from 35% to 23% in Dec 2014
- Small test used only 41 bulls with > 50 US daughters
- Full test with all 475 IG bulls gave observed REL much more similar because USA and IG both have only PI for foreign MACE bulls

Phenotypic update frequency

- Suppose reliability increases steadily from REL₁ to REL₂ across a year.
- The gain in reliability from n updates per year (REL_n) instead of 1 annual update should average:
- $REL_n = .5 (REL_2 REL_1) (n 1) / n$
- Suppose bulls increase from 75% REL₁ to 91% REL₂ when 4 years old (no daughters to many daughters).
- Minimum gain is 0% with an annual update because the bulls would stay at 75% for the whole year.
- Maximum gain is 8% with instant updating. Bulls would average (75 + 91)/2 = 83% during that year.

HOL NM\$ average reliability by age

Phenotypic update frequency

Reliability gains by update frequency

Frequency	Updates	Young REL	Marginal Gain	Proven REL	Marginal Gain
Annual	1	73.0		75.0	
6 months	2	73.5	0.5	79.0	4.0
4 months	3	73.7	0.2	80.3	1.3
3 months	4	73.8	0.1	81.0	0.7
2 months	6	73.83	0.03	81.6	0.6
Monthly	12	73.92	0.09	82.3	0.7
Weekly	52	73.98	0.06	82.8	0.5
Daily	365	73.99	0.01	82.97	0.17
Instant	∞	74.0	0.01	83.0	0.03

Assuming that REL begins at 75% and is 91% 1 year later for proven bulls and begins at 73% and is 75% 1 year later for young bulls.

- Exact calculation of genomic reliability is hard, but validation is easy
- Published USA REL averaged 2% too high for HOL, 3% too low for JER, and 1% too low for BSW
- Published Intergenomics REL averaged 4% too low for BSW traits because observed REL were higher
- Updating marker effects more frequently than 3 times per year could improve average REL up to 2.5% for recently proven bulls but < 0.3% for young animals

Acknowledgements

- Interbull Working Group on Genomic Reliability (Zengting Liu, Martin Lidauer, Mario Calus, Vincent Ducrocq, Haifa Benhajali, and Hossein Jorjani)
- Council on Dairy Cattle Breeding and Intergenomics for data
- Suzanne Hubbard for graphs
- USDA-ARS project 1265-31000-101-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information"

