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Topics

 Methods to compute genomic reliability

– Summarized by Liu et al (2017)

– GREL compared by Sullivan and Jakobsen (2014)

 Simple validation of genomic reliability 

– Do actual EBV changes agree with published REL?

– Examples from USA and Intergenomics

 Gains in reliability from more frequent updates

– Similar math can determine the value of re-estimating marker 
effects more often
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REL calculation vs. validation

 REL estimation

– Adjust theoretical REL such as from SNP-BLUP-REL or from size of 
reference population

– Use prediction error variance (PEV) because correlations are biased 
downward by selection

 REL validation

– Similar to validating EBVs using truncated data

– Examine published REL for 6 traits and Net Merit

– Examine 3 breeds (HOL, JER, BSW) on USA scale
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Genomic reliability theory

 Selection reduces variance such that Var(EBV) < REL * Var(BV), but not 
prediction error variances (PEV):

 PEV = Var(EBV – BV) = (1 – REL) Var(BV) 

 Variance of EBV differences are proportional to the difference in 
reliabilities regardless of selection. If EBV1 and EBV2 are earlier and 
later genomic evaluations with reliabilities REL1 and REL2, then

 Var(EBV2 – EBV1) = (REL2 – REL1) Var(BV)

 If REL2 is known, high, and accurate, then solve for

 REL1 = REL2 – Var(EBV2 – EBV1) / Var(BV)
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Data to validate genomic reliability

 Published genomic evaluations from April 2014

 Published genomic evaluations from April 2017

 SD of difference in genomic PTAs

 REML estimates of true TA SD from Interbull MACE

 Example for Holstein protein validation bulls:

 Average published REL1 was 0.76, REL2 was 0.95, SD of change was 8.4, 
and REML TA SD was 17.5. The observed REL1 for protein was 
calculated as

 Observed REL1 = 0.95 – (8.4)2 / (17.5)2 = 0.72
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Observed vs. published reliability, 2014

Trait Observed Published Diff Observed Published Diff

Jerseys Holsteins

Milk 73 68 +5 72 76 -4

Fat 72 68 +4 74 76 -2

Protein 71 68 +3 72 76 -4

Longevity 47 55 -8 65 70 -5

SCS 64 62 +2 77 73 +4

Preg Rate 63 52 +11 69 68 +1

NetMerit 68 64 +4 68 73 -5

Average 65 62 +3 71 73 -2
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Observed vs. published reliability, BSW

Trait Observed Published Diff Observed Published Diff

Brown Swiss - USA BSW - Intergenomics

Milk 62 63 -1 70 68 +2

Fat 64 63 +1 76 68 +8

Protein 57 63 -6 66 68 -2

Longevity 57 55 +2 63 61 +2

SCS 64 59 +6 71 66 +5

Preg Rate 56 51 +5 67 58 +9

Average 60 59 +1 69 65 +4
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Discussion of BSW results

 Same software used by USA and Intergenomics

 Same data except PA in USA vs. Pedigree Index in IG

– Bias from dam’s PTA and extra weight on PA

– Yield heritability reduced from 35% to 23% in Dec 2014

 Small test used only 41 bulls with > 50 US daughters

 Full test with all 475 IG bulls gave observed REL much more similar 
because USA and IG both have only PI for foreign MACE bulls
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Phenotypic update frequency

 Suppose reliability increases steadily from REL1 to REL2 across a year. 

 The gain in reliability from n updates per year (RELn) instead of 1 
annual update should average:

 RELn = .5 (REL2 – REL1) (n - 1) / n

 Suppose bulls increase from 75% REL1 to 91% REL2 when 4 years old 
(no daughters to many daughters). 

 Minimum gain is 0% with an annual update because the bulls would 
stay at 75% for the whole year.

 Maximum gain is 8% with instant updating. Bulls would average (75 + 
91)/2 = 83% during that year. 
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HOL NM$ average reliability by age
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Phenotypic update frequency
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Reliability gains by update frequency

Frequency Updates Young REL Marginal 
Gain

Proven REL Marginal 
Gain

Annual 1 73.0 75.0

6 months 2 73.5 0.5 79.0 4.0

4 months 3 73.7 0.2 80.3 1.3

3 months 4 73.8 0.1 81.0 0.7

2 months 6 73.83 0.03 81.6 0.6

Monthly 12 73.92 0.09 82.3 0.7

Weekly 52 73.98 0.06 82.8 0.5

Daily 365 73.99 0.01 82.97 0.17

Instant ∞ 74.0 0.01 83.0 0.03

Assuming  that REL begins at 75% and is 91% 1 year later for proven bulls
and begins at 73% and is 75% 1 year later for young bulls.
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Conclusions

 Exact calculation of genomic reliability is hard, but validation is easy

 Published USA REL averaged 2% too high for HOL, 3% too low for JER, 
and 1% too low for BSW

 Published Intergenomics REL averaged 4% too low for BSW traits 
because observed REL were higher

 Updating marker effects more frequently than 3 times per year could 
improve average REL up to 2.5% for recently proven bulls but < 0.3% 
for young animals
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