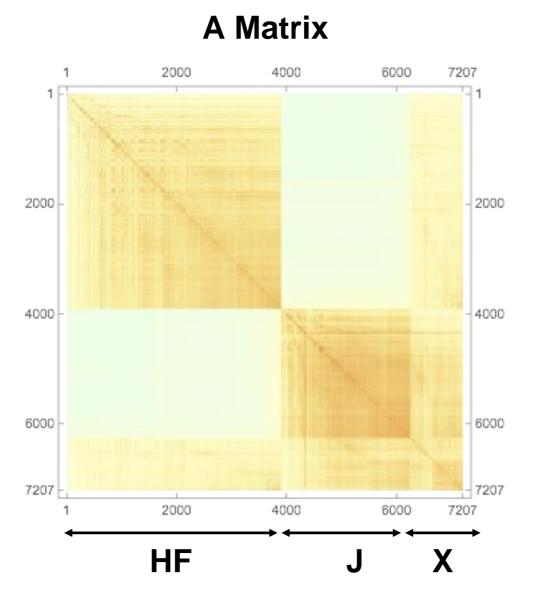
Genomic reliability algorithm for a single step marker model

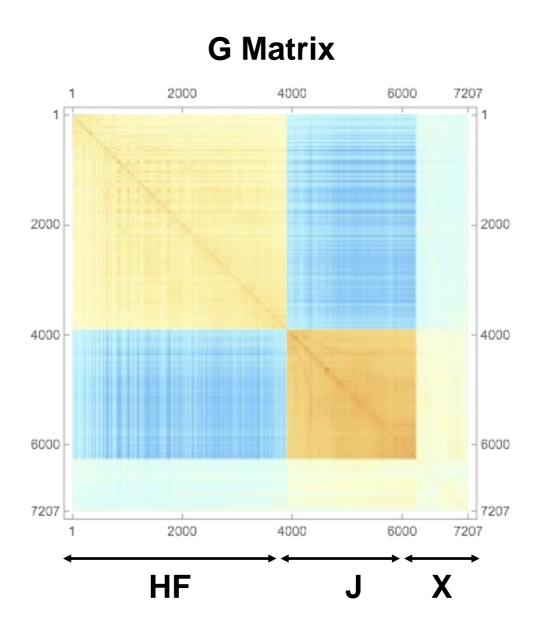
Bevin Harris LIC, New Zealand

Outline

- Brief method outline
- Multi-breed adjustments
- Computational feasibility
- Results for 2 traits and 2 SNP panels
- Conclusions

Method Outline

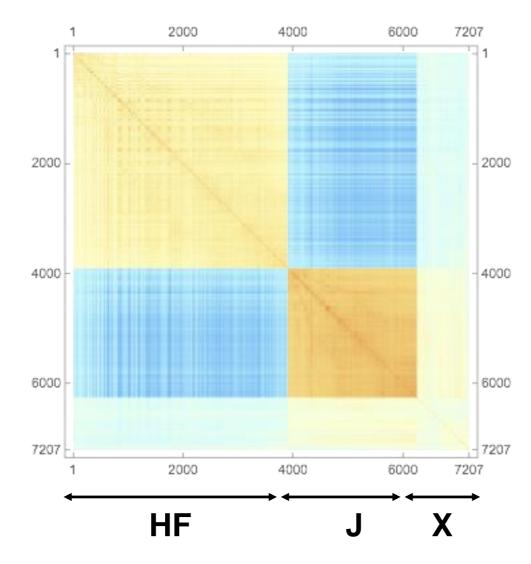

- 1. Build SNP marker MME and invert
- 2. Compute reliability for the genotyped animals and adjust for prediction R² : Rel_g
- 3. Compute reliability from using information source (IS) method:
 - 1. using only phenotypes of genotyped animals Relag
 - 2. using only phenotypes of non-genotyped animals: Relug
 - 3. using all phenotypes when fitting a polygenic effect: Rela

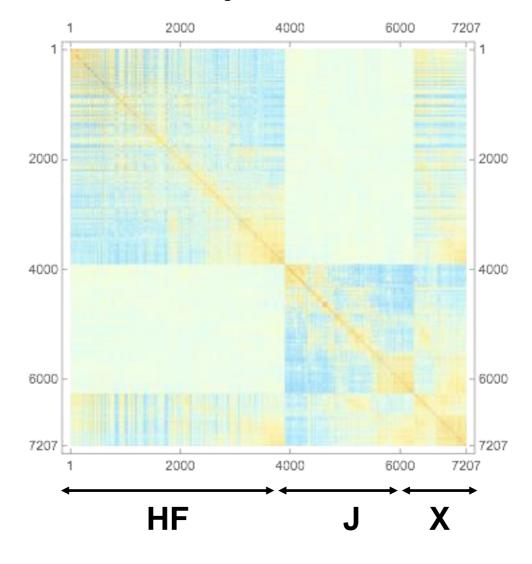

Method Outline

- 4. Compute reliability from genomics (Rel_g) over and above pedigree and propagate through the entire pedigree (without updating the genotyped animals): Rel_{gg}
- 5. Compute total reliability (Rel_t)
 - 1. Genotyped animals: Combine Relg and Relug
 - 2. Non-genotyped animals: Combine Relgg and Rela
- 6. If fitting an polygenic effect in the model weight Rel_t and Rel_a by the proportions of total genetic variance assigned to the marker and polygenic effect

- New Zealand
 - Mixture of Holstein Friesian, Jersey and crossbred animals (HFxJ)
 - SNP allele frequencies differ between the Holstein Friesian and Jersey breeds
 - Potentially impact the SNP marker reliability calculations

- 7207 Sires with 3902 HF, 2356 J and 949 HFxJ
- 50k SNP panel (35k SNP)

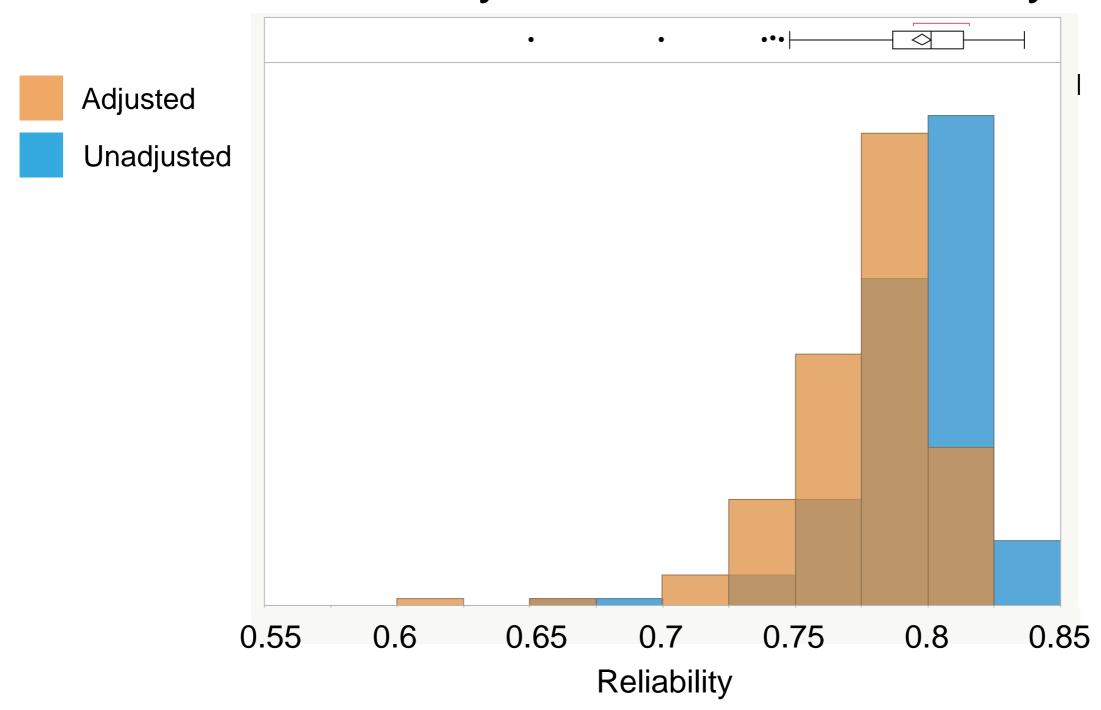



Compute Z as

$$(\mathbf{M}_i - 2\hat{p})/\hat{\omega}$$
 where $\hat{\omega} = \sqrt{2\Sigma\hat{p}(1-\hat{p})}$ and $\hat{p} = \sum_{j=1} brd_j\bar{p}_j$

G Matrix

Breed Adjusted G Matrix


Examples

- New Zealand national population 29m animals
 - Dataset 1: 35K SNP on 140K animals
 - Dataset 2: 24K SNP on 70K animals (genotypes up to 2015)
 - 2 Traits
 - Liveweight $h^2 = 0.35$, 1.9m records
 - Fertility $h^2 = 0.025$, 16.4m records
 - Prediction R² adjustment was set to 0.85

- Results of breed adjustments on SNP reliability for live weight
 - Last three sire birth year cohorts with no daughters
 - Similar results observed for fertility

		35k SNP and 140K N	
Young Sires	A Matrix	SNP	SNP breed adjusted
Holstein Friesian	0.34	0.73	0.73
Jersey	0.37	0.80	0.77
HF x J	0.34	0.75	0.75

Reliability distributions for Jersey

Computation Time

	35K SNP 140K Genotypes	24k SNP 70K Genotypes	
Breed Adjustment	19m:12s	6m:16s	
SNP Reliability	61m:39s	15m:40s	
Reliability all animals	0m:58s	0m:55s	

Total 81m:41s 22m:51s

Computation Time

24 Cores Simultaneously

- SNP Reliability
 - Inverse of SNP equations
 - Direct computation of the individual animal reliabilities from the SNP $(\mathbf{ZC}^{22}\mathbf{Z}')_{ii}$
 - Iterative computation of the individual animal reliabilities from the SNP $\mathbf{z}_i \mathbf{C}^{22} \mathbf{z}_i'$

35k SNP 140k N	24k SNP 70k N
4m:10s	1m:24s
44m33s	10m:17s
106m15s	29m:55s

Results Liveweight

		35K SNP 140K N	24k SNP 70K N
Proven Sires	A Matrix	0.85	0.85
	Genomic	0.88	0.87
Young Sires	A Matrix	0.34	0.34
	Genomic	0.62	0.42

Results Fertility

		35K SNP 140K N	24k SNP 70K N
Proven Sires	A Matrix	0.56	0.56
	Genomic	0.61	0.62
Young Sires	A Matrix	0.28	0.28
	Genomic	0.39	0.34

Conclusions

- Method is computational feasible for our national data set
 - For very large numbers of genotyped animals computing in individual reliabilities $(\mathbf{Z}\mathbf{C}^{22}\mathbf{Z}')_{ii}$ from the marker model inversion may be problematic

Conclusions

 In multi-breed genomic analysis adjusting the SNPs for breed mean and variance appears to be useful in avoiding reliability discrepancies caused by breed SNP frequency differences

Conclusions

- The method provides sensible reliabilities for the examples provided for this talk
- The method provides a way to incorporate genomic reliabilities for nongenotyped animals

Post-Doc Position available at Livestock Improvement NZ in genomic evaluation

See the App In the positions tab for more details