Genetic evaluation for carcass traits in French dairy cattle

PROMP J.^{1,4}, CROUE I.^{1,2,4}, VINET A.^{2,4}, LAUNAY A.^{1,4}, SAINTILAN R.^{3,4}, FOUILLOUX MN.⁵, VENOT E.^{2,4}, GOVIGNON-GION A.^{1,4}, DUCROCQ V.^{2,4}, MATTALIA S.^{1,4}

¹ Idele, ² INRA, ³ ALLICE, ⁴ UMT3G, UMR1313 GABI, 78352 Jouy-en-Josas Cedex, France. ⁵ Idele, Agrapole – 23 rue Jean Baldassini – 69364 Lyon Cedex 7, France.

Genetic evaluation for carcass traits in dairy cattle – Interbull 2016, Chile

idele.fr

Background

Traits for veal calves (VC)

- Material and Methods
- Results

Traits for young bulls (YB)

- Material and Methods
- Results
- Comparison of YB traits with other traits
- Conclusion

Background

Traits for veal calves (VC)

ALTER ASTR

- Material and Methods
- Results

Traits for young bulls (YB)

- Material and Methods
- Results
- Comparison of YB traits with other traits
- Conclusion

Background

Veal Calves (VC) in dairy herds

ALL REAL ASSAULT

- 86% of veal calves slaughtered in France
- 30% are crossbred between dairy dam and beef sire
- Main dam breeds: Holstein, Montbéliarde, Normande
- Main sire breeds: Holstein, Montbéliarde, Normande, Charolaise (CHA), Limousine (LIM), Blonde d'Aquitaine (BLA), Belgian Blue (BB), INRA95

Young Bulls (YB) in dairy herds

- 25% of young bulls slaughtered in France are pure dairy breed
- Main breeds: Montbéliarde, Normande, Simmental

Background

NORMABEV database

- Created since mid 2000's
- Commercial carcass data (weight, conformation, fatness, meat color)
- Routinely recorded
- In all French slaughterhouses
- On every animal (males, females, purebred, crossbred, …)

2010: Convention NORMABEV - Idele

⇒ NORMABEV database can be used by Idele and INRA for genetic and genomic evaluations

Background

 French Dual-purpose breeds (Montbéliarde, Normande, Simmental) mainly selected on dairy traits

 add carcass traits in their breeding goals

First Steps

ASTR ASTR

- Develop a genetic evaluation for carcass traits of crossbred and purebred veal calves born from dairy dams of breeds Montbéliarde and Normande (dual-purpose breeds) and Holstein
- Develop a genetic evaluation for carcass traits of purebred young bulls of breeds Montbéliarde, Normande, Simmental

- Background
- Traits for veal calves (VC)

- Material and Methods
- Results
- Traits for young bulls (YB)
 - Material and Methods
 - Results
- Comparison of YB traits with other traits
- Conclusion

Solutions analyzed separately

- **MON** population: only phenotypes of calves born from a Montbéliarde dam
- **NOR** population: only phenotypes of calves born from a Normande dam
- **HOL** population: only phenotypes of calves born from a Holstein dam

Data Selection in each population

- Purebred or crossbred calves (only CHA, LIM, BLA, BB or INRA95 sire breeds)
- Calves born since 2007,

A STAR

- Age at slaughter between 70 days and 250 days
- Carcass weight between 50 kg and 250 kg

- 3 populations analyzed separately
- Data Selection in each population

ASTRA ASTRA

Purebred or crossbred calves (only CHA, LIM, BLA, BB or INRA95 sire breeds)

Calves born since 2007				
NOR				
284 600				
15 872				
16 036				
17 254				
3 644				
4 918				

Evaluated traits

Carcass Weight (CW, in kg)

ASTR ASTR

- Age at Slaughter (AGE, in days)
- Carcass Conformation score (CC, EUROP grades, each divided in 3 subclass: -,=,+)
- Meat Color score (COLOR, 4 points scale)

Trait	HOL	MON	NOR
CW (kg)	133 ± 19	136 ± 24	131 ± 21
CC * (cl)	O ± 2 subcl	R ± 2 subcl	R- ± 2 subcl
COLOR* (cl)	2 ± ½ cl	2 ± ½ cl	2 ± ½ cl
AGE (days)	175 ± 16	166 ± 22	167 ± 22
Phenotypic statistics	S		

Genetic evaluation for carcass traits in dairy cattle – Interbull 2016, Chile

10

Statistical model

Animal multitrait mixed model : AGE, CW, CC and COLOR

For AGE in MON and NOR population only

 $y_{ijklmn} = \mu + C_i + b_j + p_k + s_l + W_{y} + a_n + \varepsilon_{ijklmn}$

- y_{ijkl}: performance
- 🕨 μ: mean
- C_i: fixed effect of contemporary group (fattening herd*birth year*slaughter season)
- b; fixed effect of sire breed
- p_k : fixed effect of age at calving of dam
- $\mathbf{v} \mathbf{s}_{l}$: fixed effect of sex of calves
- \mathbb{W}_{m} : maternal permanent environment effect for AGE in MON and NOR population only
- $\mathbf{P} \mathbf{a}_n$: animal genetic effect
 - ε_{ijklmn}: residual error

Veal Calves: Results

ALTER ASTRO

	CW	AGE	CC	COLOR
CW	0,24 (0,01)	-0,03 (0,00)	0,68 (0,00)	0,05 (0,00)
AGE	0.09 (0.02)	0,09 (0,00)	0,16 (0,00)	0,51 (0,00)
FLESH	0.66 (0.01)	-0.04 (0.02)	0,34 (0,01)	-0,42 (0,00)
COLOR	-0.03 (0.02)	0.05 (0.02)	-0.09 (0.03)	0,11 (0,00)
heritabilities on diagonal, genetic correlations above, phenotypic correlations below				

- ⇒ h² moderate for CW and CC for all breeds
- \Rightarrow h² low for COLOR for all breeds
- ⇒ High genetic correlations between CW and CC for all breeds

Background

Traits for veal calves (VC)

- Material and Methods
- Results

Traits for young bulls (YB)

- Material and Methods
- Results
- Comparison of YB traits with other traits
- Conclusion

Solutions analyzed separately

- MON population: only phenotypes of purebred Montbéliarde young bulls
- **NOR** population: only phenotypes of **purebred** Normande young bulls
- SIM population: only phenotypes of purebred Simmental young bulls

Data Selection in each population

Young bulls born since 2006

ASTIC ASTIC

- Age at slaughter between 12 months and 24 months
- Carcass weight between 170 kg and 600 kg

Solutions analyzed separately

ASTRA ASTRA

- **MON** population: only phenotypes of **purebred** Montbéliarde calves
- **NOR** population: only phenotypes of **purebred** Normande calves
- SIM population: only phenotypes of purebred Simmental calves

Data Selection in each population

Breed	Nb of young bulls	Nb of sires
Montbéliarde	156,226	4,282
Normande	160,361	2,061
Simmental	8,691	368

Evaluated traits

Carcass Weight (CW, in kg)

- Age at Slaughter (AGE, in days)
- Carcass Conformation score (CC, EUROP grades, each divided in 3 subgrades: -,=,+)

Trait	MON	NOR	SIM
CW (kg)	382,9 ± 51,4	381,9 ± 49,9	387,7 ± 54,2
CC * (cl)	R- ± 1 subcl	O+ ± 1 subcl	R- ± 1 subcl
AGE* (cl)	621,9 ± 67,5	633,5 ± 63,1	615,2 ± 78.8

Phenotypic statistics

Statistical model

ASTR ASTR

Animal multitrait mixed model : AGE, CW and CC

$$y_{ijkl} = \mu + C_i + p_j + s_k + a_l + \varepsilon_{ijkl}$$

y_{ijkl}: performance

- 🕨 μ: mean
- C_i: fixed effect of contemporary group (finishing herd*season of slaughter*year of slaughter)
- p_j : fixed effect of parity*age at calving of dam
- s_k: fixed effect of season of birth
- a_l: animal genetic effect

Young Bulls: Results

CW AGE CC CW 0,19 (0,01) -0,58 (0,05) 0,52 (0,03) AGE 0,27 (0,01) 0,09 (0,01) -0,25 (0,06) FLESH 0,55 (0,01) 0,08 (0,01) 0,23 (0,01)

heritabilities on diagonal, genetic correlations above, phenotypic correlations below

 \Rightarrow h² moderate for CW and CC for all breeds

⇒ high genetic correlations between CW and CC for all breeds

Background

Traits for veal calves

- Material and Methods
- Results

Traits for young bulls

- Material and Methods
- Results

Comparison of YB traits with other traits

Conclusion

Correlations of YB traits with other traits: Materials and Methods

Population = young bulls + paternal half-sibs

A REAL

- Milk production trait: half-sisters evaluated for milk production
- Veal calf production traits: half-brothers with carcass phenotypes

Correlations of YB traits with other traits : Results

Correlations young bulls and veal calves carcass traits

A PARA ASSA

	CW	AGE	CC
MON	0,43 (0,05)	0,40 (0,08)	0,54 (0,04)
NOR	0,44 (0,06)	0,32 (0,09)	0,70 (0,03)

Correlations between young bulls and milk production trait

		CW	AGE	CC
	ΜΟΝ	0,18 (0,04)	-0,21 (0,06)	-0,02 (0,04)
	NOR	0,08 (0,05)	-0,21 (0,05)	-0,13 (0,04)
	SIM	0,26 (0,09)	-0,36 (0,14)	-0,01 (0,09)
A -				

Background

Traits for veal calves

ALTER AND ALTER ALTER

- Material and Methods
- Results

Traits for young bulls

- Material and Methods
- Results
- Comparison of YB traits with other traits
- Conclusion

Conclusion

Genetic parameters of VC and YB carcass traits

- Consistent for VC and YB
- Consistent in all breeds

A STATE ASTRO

Carcass Weight and Carcass Conformation

- Moderate heritabilities for both VC and YB
- High correlations for both VC and YB
- \Rightarrow can be improved by selection

Favorable correlations between YB and VC carcass traits

No unfavorable correlations between YB carcass traits and milk production trait

Conclusion

National genetic evaluation for VC carcass traits officially implemented in April 2015

National genetic evaluation for YB carcass traits will be officially implemented in 2017

Next steps:

ALTER ALTER ALTER

- Implementation of a national genomic evaluation for VC and YB underway
- Update breeding goals for dual-purpose breeds

Acknowledgement

AN SKING

The authors acknowledge the financial support for this project provided by transnational funding bodies, being partners of the FP7 ERA-net project, CORE Organic Plus, and the cofound from the European Commission.

