JWAS: Just another Whole-genome Analysis Software

Hao Cheng, Rohan Fernando, Dorian Garrick
JWAS
Julia for Whole-genome Analysis Software

Bayesian Regression
- MCMC
- Bayesian Alphabet

Basic Analysis
- Linear Mixed Models
- Multivariate Analysis

Genomic Data
- Genomic Prediction
- Genome-wide Association Studies

Julia

Linear Mixed Models

Multivariate

Univariate

Missing Phenotypes

Whole-genome Data

Bayesian Alphabet

Pedigree

Incomplete Genomic Data
1. Completely open-source
2. Routine data analysis
3. "Reproducible research"
 - Participate, maintain, extend
Bayesian Linear Mixed Models (BLMM)

<table>
<thead>
<tr>
<th>BLMM</th>
<th>Marker Effect Model</th>
<th>Breeding Value Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>incomplete Genomic Data</td>
<td>RR-BLUP ss mt</td>
<td>Genomic BLUP ss mt</td>
</tr>
<tr>
<td></td>
<td>BayesA ss mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Non-Mixture Priors</td>
<td>BayesB ss mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BayesCπ ss mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BayesR ss mt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Mixture Priors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
user interface of JWAS

- In cell 2 below, the JWAS package is loaded, as well as the DataFrames package for reading text files.

In [2]:

```
using JWAS, DataFrames
```

- In cell 3 below, the data and pedigree information is loaded on line 1-2. The first several rows of data is shown on line 3.

In [3]:

```
data = readable("phenotypes.txt")
pedigree = get_pedigree("pedigree.txt");
head(data)
```

Finished!

Out[3]:

```
animal  trait1  trait2  age  sex  litter  dam
1   O1     150.0    13.0   3   M    b     D1
2   O3     40.0     5.0   4   F    a     D1
```
Out[3]:

<table>
<thead>
<tr>
<th></th>
<th>animal</th>
<th>trait1</th>
<th>trait2</th>
<th>age</th>
<th>sex</th>
<th>litter</th>
<th>dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O1</td>
<td>150.0</td>
<td>13.0</td>
<td>3</td>
<td>M</td>
<td>b</td>
<td>D1</td>
</tr>
<tr>
<td>2</td>
<td>O3</td>
<td>40.0</td>
<td>5.0</td>
<td>4</td>
<td>F</td>
<td>a</td>
<td>D1</td>
</tr>
</tbody>
</table>

- In cell 4 below, the non-genomic part of the model equation for a 2-trait analysis is defined.
 - The effects fitted for trait 1 are the intercept, sex, direct genetic effects and maternal genetic effects.
 - The effects fitted for trait 2 are the intercept, sex, age, the interaction between sex and age and direct genetic effects.

In [4]:

```
model_equations = "trait1 = intercept + sex + litter + animal + dam
                 trait2 = intercept + sex + age + age*sex + animal";
```
In [4]:
model_equations = "trait1 = intercept + sex + litter + animal + dam
 trait2 = intercept + sex + age + age*sex + animal";

In cell 5 below, the model is built given the model equation in cell 3 and residual variance R. By default, all effects in model are fixed and factors. On line 2, the effect age is defined as covariates. On line 3, the effect litter is defined as random with variance G1. On line 4, direct genetic effects and maternal genetic effects are fitted as animal and dam with variance G2 and numerator relationship matrix from pedigree. (Codes to define G1,G2, G3, R are skipped for demonstration purpose)

In [5]:
model = build_model(model_equations,R)
set_covariate(model,"age")
set_random(model,"litter",G1)
set_random(model,"animal dam", pedigree,G2)
In cell 6 below, genoimc part of the model is defined with genotypes file and variance **G3**. The format of genotypes file is:

```
01,1,2,0,1,0
03,0,0,2,0,1
```

```
In [6]: add_genotype(model,"genotypes.txt",G3)
```

In cell 7 below, a multi-trait BayesC analysis is performed with **model** and **data** defined in cell 1 to 5.

```
In [7]: runMCMC(model,data,methods="BayesC")
```

More information is available [here](#). For help on JWAS, type ?JWAS and press enter.
Future plan

<table>
<thead>
<tr>
<th>BLMM</th>
<th>Marker Effect Model</th>
<th>Breeding Value Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>incomplete Genomic Data</td>
<td>Non-Mixture Priors</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>RR-BLUP as mt</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>BayesA as mt</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td>Mixture Priors</td>
<td>BayesB as mt</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>BayesC as mt</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>BayesR as mt</td>
<td>Genomic BLUP as mt</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>Genomic BLUP as mt</td>
</tr>
</tbody>
</table>

workshops

JuliaBox beta
Run Julia from the Browser. No setup.

The Julia community is doing amazing things. We want you in on it!
Questions?

- http://QTL.rocks
- My group is Recruiting!