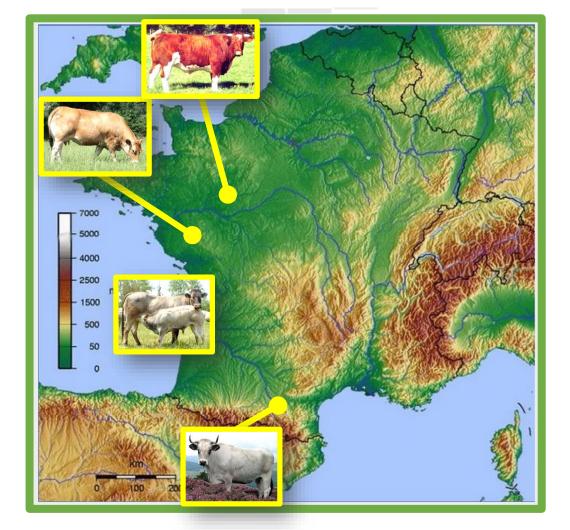
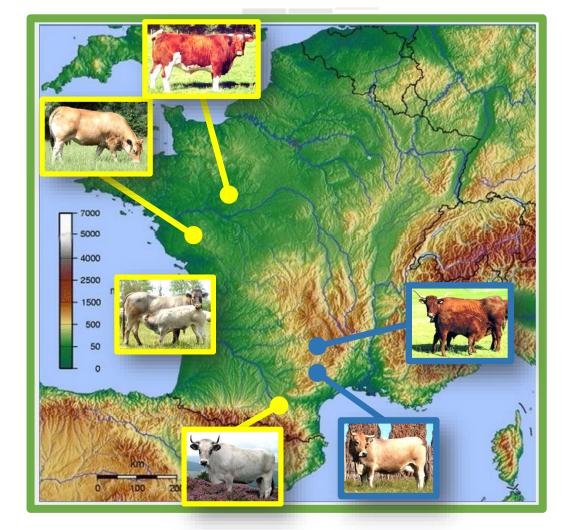


Assessment of Single Step benefits for on-farm French National Beef genetic evaluations of birth and weaning traits

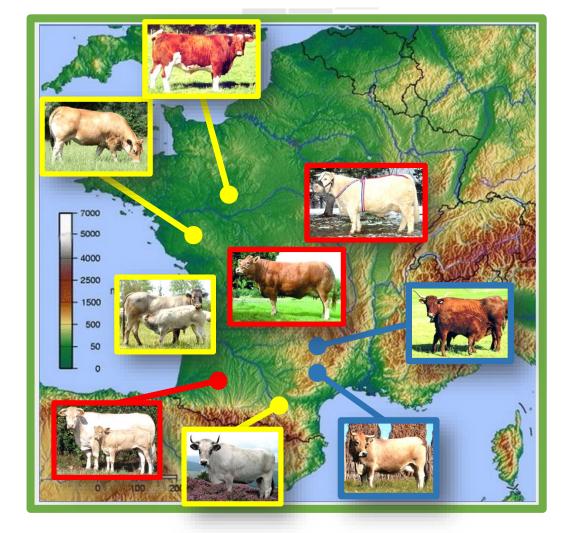
Eric Venot, Iola Croué, Alexis Michenet, Thierry Tribout

Interbull meeting – Auckland 11th February 2018





Pedigree	Performance	Genotyped (with perf)		
Bazadaise – Gasconne – Parthenaise – Rouge des Prés				
40 000 – 550 000	35 000 – 430 000	85 - 400		



Pedigree	Performance	Genotyped (with perf)		
Bazadaise – Gasco	daise – Gasconne – Parthenaise – Rouge des Prés			
40 000 – 550 000	35 000 – 430 000	85 - 400		
	Aubrac - Salers			
~ 1 000 000	800 000 – 950 000	600 – 700		

Pedigree	Performance	Genotyped (with perf)	
Bazadaise – Gasconne – Parthenaise – Rouge des Prés			
40 000 – 550 000	35 000 – 430 000	85 - 400	
Aubrac - Salers			
~ 1 000 000	800 000 – 950 000	600 – 700	
Blonde d'Aquitaine – Limousine – Charolaise			
3 to 10 millions	3 to 9 millions	9 000 – 22 000	

Beef cattle polygenic evaluation

polygenic genetic evaluations

- since 1993
- 9 breeds

Weaning traits (adjusted weaning weight at 7 months, Muscular and Skeletal developments)

Temperament

Post weaning traits (adjusted weaning weight at 2 years, Muscular and Skeletal developments)

Carcass traits

Fertility and cow productive life

Beef cattle polygenic evaluation

polygenic genetic evaluations

- since 1993
- 9 breeds

multiple traits Animal model

with maternal genetic effects and permanent maternal environment effect

direct and maternal polygenic EBVs

Temperament

Carcass traits

Birth traits (birth weight and calving ease)

Weaning traits (adjusted weaning weight at 7

months, Muscular and Skeletal developments)

Post weaning traits (adjusted weaning weight at

2 years, Muscular and Skeletal developments)

Fertility and cow productive life

Current French genomic evaluation in Beef cattle

- genomic evaluations since 2015
- for the 3 main breeds: Charolais, Limousine & Blonde d'Aquitaine
- for birth, weaning and carcass traits
- 2-steps method following VanRaden et al. (2009)

for any genotyped animal i : $\alpha_i \times EBV_i + \beta_i \times DGV_i + \gamma_i \times EBV_RP_i = GEBV_i$

National polygenic EBV

Direct Genomic Value

Polygenic EBV

(on complete population)

(on genomic reference population)

(on genomic reference population)

(SNP effects estimated by BayesC)

 α_i , β_i , γ_i : depend on EBV_i , DGV_i and EBV_RP_i reliabilities

Single step use for French Beef cattle?

Today French Genomic evaluations

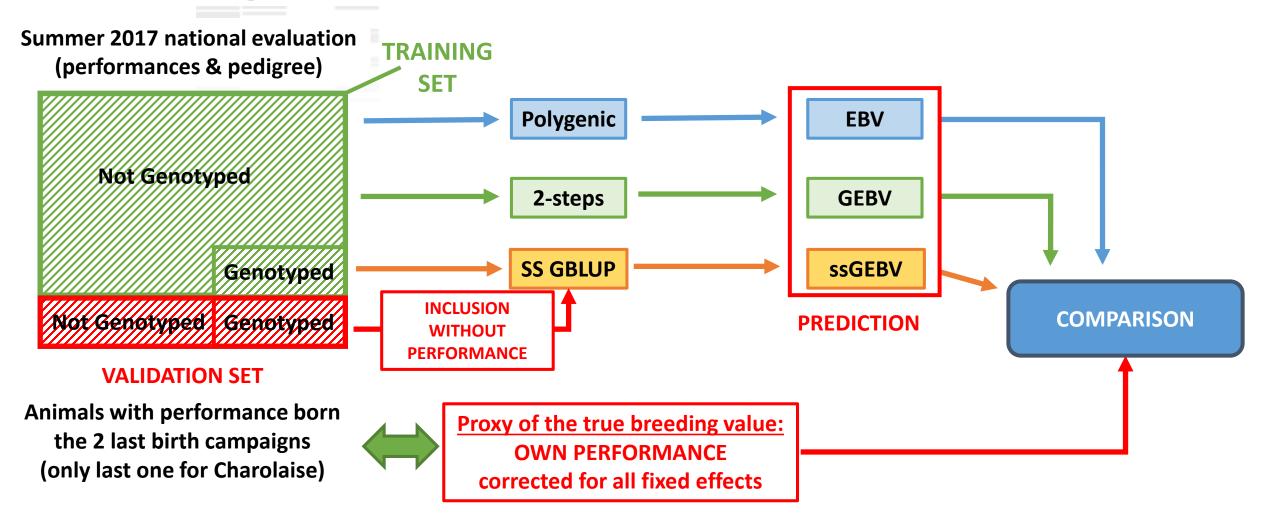
- GEBVs only for genotyped animals
- Only for birth, weaning and carcass traits
 - Only for the 3 main breeds

Single Step Genomic BLUP evaluation?

ssGEBV

considering the pedigrees and phenotypes of the complete population & genotypes

- Use of Single Step GBLUP methodology (BLUPf90 software (Misztal et al., 2009))
- Assessment of SS GBLUP benefits on CHA, LIM & BLA breeds

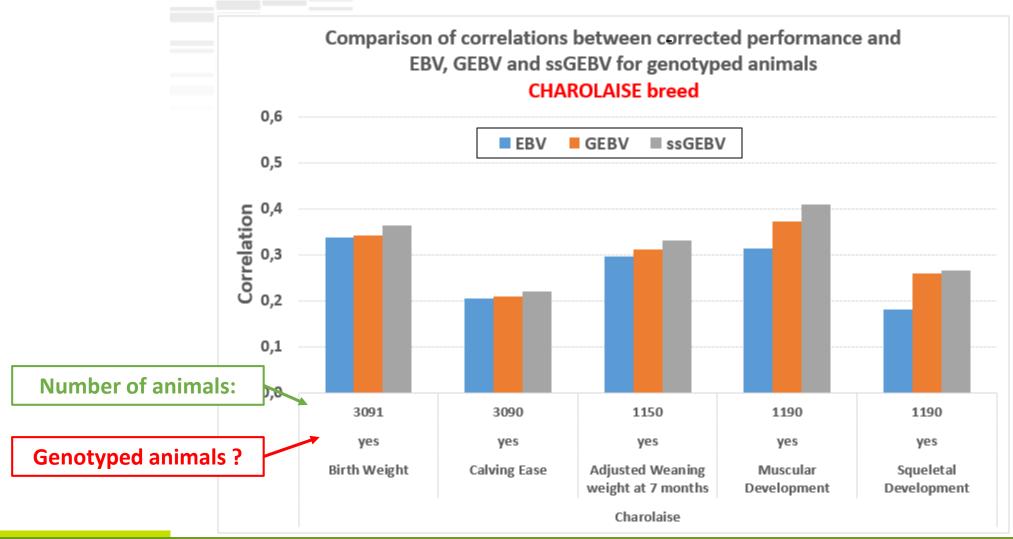


Comparison between polygenic, 2-steps and Single Step GBLUP results

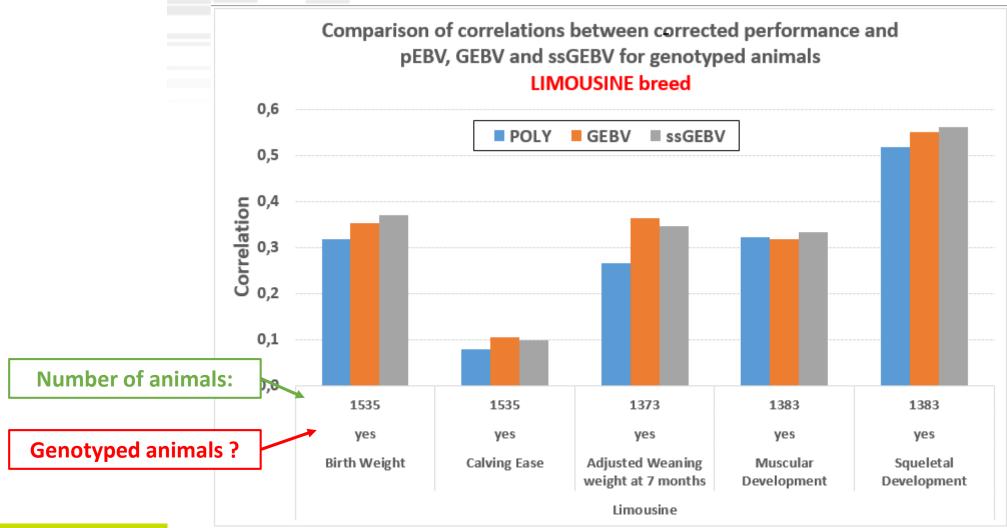
Training / Validation sets

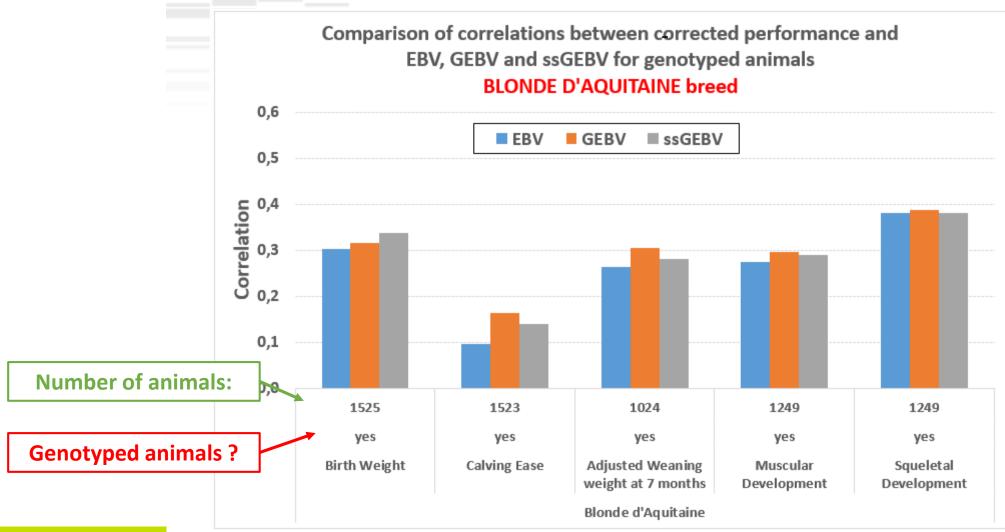
Size of Training and Validation sets

		Traits recorded at birth		Traits recorde	ed at weaning
		Genotyped		Genotyped	
Breed	Set	Yes	No	Yes	No
Blonde d'Aquitaine	Training	6 184	2 578 288	3 522	790 184
	Validation	1 525	280 032	1 024	36 406
Limousine	Training	6 193	4 649 955	5 415	270 7147
	Validation	1 535	513 949	1 373	150 748
Charolaise	Training	17 278	8 386 555	15 729	4 460 059
	Validation	3 091	330 840	1 150	27 270


Comparison of 3 breeding value prediction methods

- Only on direct additive genetic effects
- Comparison of:
 - 1) Correlations between Corrected Perf / EBV, GEBV & ssGEBV

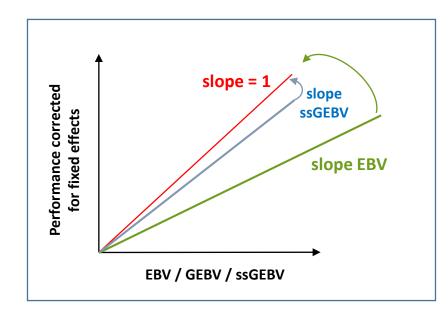

Correlation comparison


Correlation comparison

Correlation comparison

Comparison of 3 breeding value prediction methods

- Only on direct genetic values
- Comparison of:
 - 1) Correlations between Corrected Perf / EBV, GEBV & ssGEBV



Comparison of 3 breeding value prediction methods

- Only on direct genetic values
- Comparison of:
 - 1) Correlations between Corrected Perf / EBV, GEBV & ssGEBV
 - 2) Bias improvement

<=> "is the slope closer to 1?"

Bias improvement

No general tendency observed => trait and breed differences

Slope average

	EBV	GEBV	ssGEBV
Blonde d'Aquitaine	0.78	0.81	0.83
Limousine	0.86	0.79	0.88
Charolaise	0.83	0.75	0.84

- Slopes < 1 for the 3 methods (some cases > 1)
- in average for the 5 traits:
 - GEBV are more biased than polygenic EBVs (except for Blonde d'Aquitaine)
 - ssGEBV are less biased than EBV and GEBV

Conclusion

- Practical test of SS methodology on all French National beef cattle breeds
- SS-GBLUP: additional improvements in comparison to current 2-steps genomic evaluation in terms of accuracy and bias, in general.
- Some cases: current 2-step method better that SS-GBLUP (accuracy)
 => use of Single Step approach allowing the inclusion of QTL.
 - => Other investigations needed before general implementation on all beef breeds and all traits.

Thank you for your attention

7 – 11 February 2018
Aotea Centre
Auckland,
New Zealand

