# Value of selecting for cow and calf livability



<sup>1</sup>Animal Genomics and Improvement Laboratory USDA-ARS, Beltsville, MD <sup>2</sup>Council on Dairy Cattle Breeding, Bowie, MD paul.vanraden@ars.usda.gov



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (1)



 Reasons for disposal have been reported and stored in DHI records since 1970

**92 million records on 32 million cows** 

About 17% of cows die instead of being sold across all lactations, averaging 6% per lactation, higher for older and lower for younger cows

The lost beef income from cows that die in the U.S. = 17% of 9.2 million cows × \$1200/cow ÷ 2.8 lactations = \$670 million per year.



## **Cow livability evaluation**

#### Methods

- Multibreed model including heterosis and inbreeding
- Multitrait model with productive life (PL) by lactation using similar edits and same software as other traits
  - Lactation PL not reported, only lifetime PL
- Pre-adjustment for unequal herd-year-parity variance
- Heritability of 1.3% (Miller et al., JDS, 2008) reestimated to only 0.6% with more data
- Genetic correlation with lactation PL of 0.50



# **CL reliability and PTA interpretation**

 Genomics predictions for CL have good reliability in spite of low heritability. Reliability for young genomic tested HOL bulls without daughters averaged 56% compared to 30% for parent average.

If Bull A has a PTA of +2.0, then 83% + 2.0% = 85%
of his daughters will remain alive to be sold for beef.

If Bull B has a PTA of -3.0%, then 83% - 3.0% = 80%
of his daughters remaining alive to be sold for beef.



VanRader

#### PTA correlations of livability with other traits

#### Bull minimums: 1990 birth year, 50 daughters, 0.50 reliability for PTA livability

| Trait       | Holstein | Jersey |
|-------------|----------|--------|
| Milk        | 0.09     | -0.08  |
| Fat         | 0.21     | 0.01   |
| Protein     | 0.16     | -0.01  |
| PL          | 0.70     | 0.54   |
| SCS         | -0.28    | -0.07  |
| DPR         | 0.40     | 0.54   |
| CCR         | 0.40     | 0.33   |
| HCR         | 0.28     | 0.32   |
| Bulls (no.) | 45,840   | 3,893  |



### CL, PL, and health traits

| Trait              | Estimated genetic correlations |       |       |  |  |
|--------------------|--------------------------------|-------|-------|--|--|
|                    | CL                             | PL    | Diff  |  |  |
| Displaced abomasum | -0.66                          | -0.62 | 0.04  |  |  |
| Ketosis            | -0.64                          | -0.60 | 0.04  |  |  |
| Lameness           | -0.46                          | -0.31 | 0.15  |  |  |
| Mastitis           | -0.23                          | -0.25 | -0.02 |  |  |
| Metritis           | -0.21                          | -0.15 | 0.06  |  |  |
| Retained placenta  | -0.30                          | -0.33 | -0.03 |  |  |

Health trait PTAs for 5,265 bulls from Parker-Gaddis et al. Correlations estimated by Kristen using Calo method



Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (6)

#### **Genetic trend for cow livability - HOL**



CDCB



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (7)

#### **Genetic trend for CL – All breeds**





# **Proposal to include CL in net merit**

|                        | Relative emphasis in USDA index (%) |             |      |      |      |      |      |
|------------------------|-------------------------------------|-------------|------|------|------|------|------|
|                        | PD\$                                | MFP\$       | NM\$ | NM\$ | NM\$ | NM\$ | NM\$ |
| Trait                  | 1971                                | <b>1976</b> | 1994 | 2000 | 2003 | 2014 | 20?? |
| Milk                   | 52                                  | 27          | 6    | 5    | 0    | -1   | -1   |
| Fat                    | 48                                  | 46          | 25   | 21   | 22   | 22   | 24   |
| Protein                | •••                                 | 27          | 43   | 36   | 33   | 20   | 18   |
| Longevity              | •••                                 | •••         | 20   | 14   | 11   | 19   | 13   |
| SCS                    | •••                                 | •••         | -6   | -9   | -9   | -7   | -7   |
| Udder                  | •••                                 | •••         | •••  | 7    | 7    | 8    | 7    |
| Feet/legs              | •••                                 | •••         | •••  | 4    | 4    | 3    | 3    |
| Body size              | •••                                 | •••         | •••  | -4   | -3   | -5   | -6   |
| Pregnancy rate         | •••                                 | •••         | •••  | •••  | 7    | 7    | 7    |
| Calving traits         | •••                                 | •••         | •••  | •••  | 4    | 5    | 5    |
| <b>Conception rate</b> | •••                                 | •••         | •••  | •••  | •••  | 3    | 3    |
| Cow livability         | •••                                 | •••         | •••  | •••  | •••  | •••  | 7    |



# Heifer livability (HL) data



Extract data from CDCB database

- 10,976,884 heifer births
- 495,282 with "left herd" codes (6 = died)
- 2,061,454 with no calving or breeding to confirm that they lived
- **6,343,337** calves born **2001–13**
- 2,826,352 in herds where 2–25% died

>99% of data used from one source (DRMS)



## **Heifer livability edits**

- Heifers  $\leq 2$  days not used for HL, used in stillbirth
- Heifers > 18 months old set to 18 months
- Heifers that have a calf are considered alive, also if sold for infertility (code 4), or sold for any other reason (code 5)
- Sold to another dairy (code 2) are not used
- Bull calf deaths are not reported

• After edits, livability scored as 100 or 0



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (11)

## **Heifer livability results**

• 23% of reported calf deaths during first 2 months

 33% during month 18 and later but not used because many were near fresh date

Edited calf livability averaged 95%

 0.4% heritability estimated by sire model REML (VanRaden, 1986 programs)



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (12)

# **HCD** haplotype

Holstein haplotype for cholesterol deficiency (HCD)

**Discovered by German researchers in 2015** 

Heterozygous animals have reduced cholesterol, but homozygotes have no cholesterol and survive only a few months

 Causative mutation discovered in 2016, lab test results now sent by Holstein USA to CDCB



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (13)

## **Heifer livability and HCD**

• For reported heifer livability data:

- 4% more death loss from carrier 3,421 sire × carrier MGS matings (significant, P < 0.0001)</p>
- **12%** expected if carrier × carrier matings are lethal
- Could be under-reporting of death loss, or homozygous HCD sick calves are sold before they die

Genomic PTAs not attempted yet



#### Conclusions

 Cow and heifer livability have low heritability but much data

 Economic value of CL is high (\$1200) and should receive 7% of emphasis in net merit, but would remove 6% of emphasis from PL (19% vs. 13%)

 Database for HL is not national yet, but calf losses from HCD carrier matings were confirmed



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (15)

#### Acknowledgements

• Data provided by CDCB

 Heifer death codes provided by Dairy Records Management Systems, NC and IA



VanRaden

Interbull annual meeting, Puerto Varas, Chile; Oct. 25, 2016 (16)