

Genomic accuracy depends on... what?

- Starting points for the discussion diverge among people
 - Simulations, Ne, Me, LD, relationships, n, h^2 , ...
- Historically:
 - Forefathers of animal breeding assumed large populations and infinitesimal genomes:
 - Selection index on "unrelated" candidates to selection
 - Relationship matrix
 - BLUP
 - This leads to meaningful estimates of accuracy from a few parameters.
- Can we reach a similar consensus?

What you can achieve with theory

Selection index

TABLE 8.1. WEIGHTS AND ACCURACY VALUES FOR PREDICTING ADDITIVE GENETIC VALUE FROM RECORDS OF VARIOUS RELATIVES. (h² IS HERITABILITY; r IS REPEATABILITY).

Records		Selection Index Weights	Accuracy = r _{TI}
Individual	(1)	h ²	$\sqrt{h^2}$
	(n)	$nh^2/[1 + (n-1)r]$	$\sqrt{nh^2/[1 + (n-1)r]}$
Dam or sire or progeny	(1)	$h^{2}/2$	$.50\sqrt{h^2}$
	(n)	$nh^2/[1 + (n-1)r](2)$	$.50\sqrt{nh^2/[1 + (n-1)r]}$
Sire and dam	(1)	$h^2/2; h^2/2$	$.71\sqrt{h^2}$
	(n)	.5nh ² /[1 + (n-1)r];	$.71\sqrt{nh^2/[1 + (n-1)r]}$
		$.5nh^2/[1 + (n-1)r]$	
One grandparent		h ² /4	$.25\sqrt{h^2}$
Four grandparents		All $h^2/4$	$.50\sqrt{h^2}$
One great-grand- parent		h ² /8	$.125\sqrt{h^2}$
Eight great- grandparents		All h ² /8	$.35\sqrt{h^2}$

BLUP

$$\begin{bmatrix} u \\ e \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} e \end{bmatrix} \begin{bmatrix} e \end{bmatrix}$$

$\begin{pmatrix} \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \sigma^2 \mathbf{G}^{-1} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{u}} \end{pmatrix}^{-1} \langle \mathbf{Z}' \mathbf{y} \end{pmatrix}^{\cdot}$ The solutions are: $\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}} \end{pmatrix} = \begin{pmatrix} \mathbf{C}^{\mathbf{X}\mathbf{X}} & \mathbf{C}^{\mathbf{X}\mathbf{Z}} \\ \mathbf{C}^{\mathbf{Z}\mathbf{X}} & \mathbf{C}^{\mathbf{Z}\mathbf{Z}+} \end{pmatrix} \begin{pmatrix} \mathbf{X}' \mathbf{y} \\ \mathbf{Z}' \mathbf{y} \end{pmatrix} \text{ where }$ $\begin{pmatrix} \mathbf{C}^{\mathbf{X}\mathbf{X}} & \mathbf{C}^{\mathbf{X}\mathbf{Z}} \\ \mathbf{C}^{\mathbf{Z}\mathbf{X}} & \mathbf{C}^{\mathbf{Z}\mathbf{Z}+} \end{pmatrix} = \begin{pmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \sigma^2 \mathbf{G}^{-1} \end{pmatrix}^{-1}.$

The inverse of a non-full rank coefficient ma generalized inverse without affecting the PEV.

Pseudo-BLUP

the current generation. Such an index is called a pseudo-BLUP index. Thus the information sources are:

- 1. phenotypic own performance (P_i)
- 2. phenotypic information of full sibs (P_{FS})
- 3. phenotypic information of half sibs (P_{hs})
- 4. phenotypic information of progeny testing (P_{prog})
- 5. estimated breeding value of the sire (EBV_s)
- 6. estimated breeding value of the dam (EBV_d)
- 7. average estimated breeding values of the dams of the half sibs (EBV_{hs-dams})

Four "horsemen" that "ride" genomic selection

• Simulations

- Linkage disequilibrium
- Relationships
- Effective number of segments

Everyone agrees that these are important notions

Simulations (1/2)

We rely too much on simulations as substitute for theory ...and we do very poor simulations

- Genes are not QTN: biallelic, single nucleotide polymorphisms
- Genes have coding parts, deletions, enhancers, promoters
- Genes are multiallelic with "fuzzy" locations (PRNP, α_{s1} casein...)
- Mutations are not the same across breeds
- Genes interact !!!!
- Genes mute

Eight known mutations of the BMP15 gene

Slide by Loys Bodin

Molecular characterization of the goat CSN1S1⁰¹ allele

Gianfranco Cosenza¹, Rosa Illario¹, Andrea Rando², Paola di Gregorio², Piero Masina² and Luigi Ramunno¹

Mahè & Grosclaude, 1993). Such alleles are characterized by different mutations: single point mutations, responsible for premature stop codons, characterize null alleles of the CSN2 (Rando et al. 1996; Persuv et al. 2000) and CSN1S2 (Ramunno et al. 2001) loci; large DNA rearrangement (deletion/insertion) events of unknown origin and location characterize the two null alleles ($CSN1S1^{01}$ and $CSN1S1^{02}$) of the CSN1S1 locus (Martin et al. 1999).

a

Male 56 day

С

Short communication: Evidence for a major gene by polygene interaction for milk production traits in German Holstein dairy cattle

Carlborg, Örjan, et al. "Epistasis and the release of genetic variation during long-term selection." Nature genetics 38.4 (2006): 418.

7

Simulations (2/2)

From simulations, we had the following "fake news"

- Additive variance diminishes quickly (but mutation, dominance, epistasis refill)
- Across-breed predictions are possible (but gene substitution effects depend on background, environment)
- Sequence is more accurate than SNP chips (but it has high redundancy and genes are not QTN)
- Bayesian regressions are better than GBLUP (most often they're not)

Linkage disequilibrium (1/2)

- We don't have consensual global statistics to describe
 - the relationship between LD and accuracy in a population
 - Reduction of genetic variance due to LD (i.e. Bulmer effect)
- All that we have is those pairwise r^2
- Do we need n-loci statistics or higher moments?
- Can we correlate LD measures with genomic accuracy?
 - Maybe not

• But it does not result in higher accuracy

Legarra et al. 2014

Linkage disequilibrium (2/2)

- Mental model of Bayesian regression: there will be at least one SNP in complete LD with the QTL
 - Maybe, but then there will be *many* SNP in almost-complete LD
- Mental model of GBLUP: does $ZZ' \approx QQ'$?
- Is any of these models correct? To what extent?

Relationships (1/2)

Several definitions not easy to conciliate

<u>Probabilistic</u>: assuming an unrelated base population (which one ?)

- Expected IBD relationships *conditional* on the pedigree (A)
- Real unobserved IBD relationships (\widetilde{R})

<u>Statistical</u>: using cross-products

• VanRaden's **G** (base population is whatever we use in p)

Pedigrees go back in time "forever"

A closed rabbit line of 45 discrete generations: 934 sires (yellow) with 1,950 dams (green) and 3,492 progeny (red).

Universidad Politécnica de Valencia, Spain

All G-matrices are equal

Allele coding in genomic evaluation

Ismo Strandén^{1*} and Ole F Christensen²

On curious properties of genomic relationship matrices in mixed models Bruce Tier and Karin Meyer Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia

Which GRM?

- ► GRM that look very different ...
 - \longrightarrow different allele coding, centering, scaling, etc.
 - \ldots give 'equivalent' predictions \rightarrow shifted breeding values
 - ... but not necessarily the same prediction error variances

Strandén, I., Christensen, O. F. 2011. Allele coding in genomic evaluation. Genet. Sel. Evol. 43:25.

IMPLICATIONS?

Relationships (2/2)

We advertise the <u>unified</u> theory of relationships based on metafounders

- $G = \text{crossproduct of } Z = \{-1,0,1\}$ is the absolute reference (Christensen, 2012)
- As a byproduct, pedigree base populations are related
- Other options?

Relationships within/across Genetic Groups , Manech Tete Rousse

Effective number of segments (Me) (1/3)

- Me describes the "non infinitesimallity" of the genome
 - If $Me = \infty$ (infinitesimal) then $\tilde{R}_{ij} = A_{ij}$ and $Var(\tilde{R}_{ij} A_{ij}) = 0$
 - If Me = 1 (single locus) then $Var(\tilde{R}_{ij} A_{ij}) = 4(\phi_{ij,ij} \phi_{ij}\phi_{ij})$
- To me, Me is a parameter of the population like h^2
- To other people (Lee, Wientjes) this is data specific: an empirical quantity $\frac{1}{var(G_{ij}-A_{ij})}$ or $\frac{1}{\overline{r^2}}$

H. Wang¹, I. Misztal² & A. Legarra³

Effective number of segments (Me) (2/3)

Paradoxes of data specific *Me*; for 2 generations (Hill and Weir 2011) :

- $Me = \infty$ between father and offspring
- Me = 636 for fullsibs,
- Me = 318 for halfsibs and
- Me = 503 for cousins

I'd rather prefer a population parameter from which to deduce these values...

Effective number of segments (Me) (3/3)

Can it be a population parameter?

- The distribution of segments from an ideal infinite base population is described by the theory of junctions, too complicated 😕
- Segments should be created by meiosis and disappear by drift
- Is there an equilibrium?

An attempt to conclude

- Simulations are misleading
- LD is not well quantified
- What do we mean by relationship?
- Can we better define *Me*?

- We animal breeders should make an effort to clearly define concepts
- Lack of formalization leads to improvisation and misunderstanding
- Lack of agreement leads to disparate conclusions

Acknowledgments

- Poctefa funding project "ARDI"
- INRA SelGen metaprogram, project EpiSel

UNIÓN EUROPEA UNION EUROPÉENNE

Interreg

POCTEFA