#### The use of multi-breed reference populations and multi-omic data to maximize accuracy of genomic prediction



*M. E.* Goddard<sup>1,2</sup>, *I.M.* MacLeod<sup>2</sup>, *K.E.* Kemper<sup>3</sup>, *R.* Xiang<sup>1</sup>, *I.* Van den Berg<sup>1</sup>, *M.* Khansefid<sup>2</sup>, *H.* D. Daetwyler<sup>2</sup> & B.J. Hayes<sup>4</sup>

<sup>1</sup>Faculty of Veterinary & Agricultural Science, University of Melbourne, <sup>2</sup>Agriculture Victoria, Bundoora, <sup>3</sup>Institute for Molecular Bioscience, and <sup>4</sup>Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD 4067, Australia.

AGRICULTURE VICTORIA



## This talk

1

Introduction

Do QTL segregate across breeds?

Why are multi-breed GEBVs hard?

**Solutions** 





# Introduction

GEBV accuracy is low if reference population is small, or target populations is distantly related to training population

Training populations within breed are too small numerically small breed hard to measure traits eg FCE

Therefore, use multi-breed training population

Training on a different breed to target  $\rightarrow$  low accuracy

Aim = Accurate GEBVs for a breed with a small training population based on a multi-breed training population





#### Do QTL segregate across breeds?(Kath Kemper)



#### Do QTL segregate across breeds?

Across 11 QTL, length of conserved haplotype (0.4kb-55kb) around mutation suggest age of QTL mutations varies ~ 2,000 to 50,000 generations old

Prior to breed formation

QTL can and do segregate across breeds, although drift and selection can result in fixation

# Age of myostatin mutations (50 – 10 gen) (O'Rourke et al)



### Why are multi-breed GEBVs hard?

SNP x breed interactions differences in LD phase between breeds QTL x breed interactions Due to non-additive gene action typically small variances equivalent to sire x breed interactions typically small Low accuracy even in simulation

Differences in allele frequency

 $F_{\text{ST}}$  is low QTL segregate across breeds

### Why are multi-breed GEBVs hard?

LD phase differs between breeds

Within breed GEBVs estimate the effect of large chromosome segments

This works due to LD within a breed

Effective number of chromosome segments = 5000

That is, segments 600 kb long

PW\_lwt\_chr5



### Why are multi-breed GEBVs hard?

Within breed GEBVs estimate the effect of large chromosome segments

This works due to LD within a breed

Effective number of chromosome segments = 5000

That is, segments 600 kb long

Across breeds conserved segments are much smaller (x10 smaller)

# Solutions

Increase size of training population

Include target breed in training population









Holstein 4000 bulls, 10023 cows



Jersey 1044 bulls, 4232 cows



Aussie Reds 114 Bulls

*Real or imputed 630K SNP for all individuals* 

#### Accuracy of Bayes R (Irene van den Berg)



THE UNIVERSITY OF MELBOURNE

12

# Solutions

Increase size of training population

Include target breed in training population

Use denser SNP panels or sequence





# Variance explained by SNPs and sequence (Iona Macleod)

#### **Proportion of Total Genetic Variance Explained by SNP and Pedigree: BayesR (Mixed Hol & Jer)** % Genetic Var - SNP % Genetic Var - Ped 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ~600,000 ~40,000 ~600,000 ~40,000 400,000 ~600,000 million ~400,000 ~600,000 ~10,000 $^{\sim}10,000$ ~40,000 million ~40,000 ~1 million ~1 million 7 5 800K 50K800Kpruned800K SEQ 50K800Kpruned800K 50K SEQ 50K 800K SEQ 10K 10K SEQ Milk Yield **Protein Yield** Temperament Stature Aust Bull & Cow: Holstein & Jersey Danz Bulls Only: Holstein & Jersey



AGRICULTURE VICTORIA

Economic Development, Jobs, Transport and Resources

AGRICULTURE VICTORIA

#### Harnessing the power of whole-genome sequence: first global report of improved genomic prediction accuracy using sequence data in sheep

Iona MacLeod, Bolormaa Sunduimijid, Majid Khansefid, Andrew Swan, Julius van der Werf & Hans Daetwyler





#### GWAS – Carcass Fat Depth (ccfat)







#### Meat Traits:

**GBLUP** Accuracy - Merino x Border Leicester





# Solutions

Increase size of training population

Include target breed in training population

Use denser SNP panels or sequence

Use Bayesian statistical method not GBLUP





### Accuracy r(DGV,DTD) in Aussie Red Bulls

#### (Iona MacLeod)





# Wool Traits:

## **Prediction Accuracy in Merinos**



MELBOURNE

#### BayesR vs BLUP (BTA11)



# Solutions

Increase size of training population

Include target breed in training population

Use denser SNP panels or sequence

Use Bayesian statistical method not GBLUP

Use multiple traits





#### Multi-trait GWAS (Ruidong Xiang)





AGRICULTURE VICTORIA

Validation of lead pleiotropic SNPs (Ruidong Xiang)

Select 21 lead pleiotropic SNPs and confirmed by conditional analysis in bulls

#### Linear index validation of lead pleiotropic SNPs in cows:

| Phenotype | SNPs no. | SNP no. with the<br>same effect<br>directions | Percent | SNPs no. P<0.05<br>in validation<br>GWAS | Percen<br>t |               |
|-----------|----------|-----------------------------------------------|---------|------------------------------------------|-------------|---------------|
| RT        |          | 21                                            | 100%    | 17                                       | 81%         |               |
| PC        | 21       | 21                                            | 100%    | 18                                       | 86%         |               |
| СТ        |          | 21                                            | 100%    | 17                                       | 81%         | ULTURE VICTOR |



#### The effects of lead SNPs across independent traits





# Solutions

Increase size of training population

Include target breed in training population

Use denser SNP panels or sequence

Use Bayesian statistical method not GBLUP

Use multiple traits

Use gene expression





# Number of cis eQTL in cattle (Ben Hayes)

|              | Milk        |       | Blood           |       |  |
|--------------|-------------|-------|-----------------|-------|--|
| -log10Pvalue | Significant | FDR   | Significant SNP | FDR   |  |
|              | SNP         |       |                 |       |  |
| 1            | 10,019,870  | 0.958 | 10,061,484      | 0.826 |  |
| 2            | 1,150,197   | 0.835 | 1,637,047       | 0.507 |  |
| 3            | 173,662     | 0.553 | 422,948         | 0.196 |  |
| 4            | 40,601      | 0.237 | 176,161         | 0.047 |  |
| 5            | 15,299      | 0.063 | 98,340          | 0.008 |  |
| 6            | 6,831       | 0.014 | 60,538          | 0.001 |  |
| 7            | 3,340       | 0.003 | 38,413          | 0.000 |  |
| 8            | 2,201       | 0.000 | 26,655          | 0.000 |  |





# eQTL and QTL (meat quality) comparison within 50kb of calpastatin (Majid Khansefid)



#### eQTL and QTL (meat quality, PW hip height and multi-trait) overlap



|                                  | Effect | P-value                | Prop. σ² <sub>P</sub> |
|----------------------------------|--------|------------------------|-----------------------|
| Additional traits                |        |                        |                       |
| phosphorus conc.                 | 41.8   | 1.10x10 <sup>-11</sup> | 0.107                 |
| eSLC37A1                         | 0.160  | 3.55x10 <sup>-18</sup> | 0.224                 |
| Key production trait, milk yield |        |                        |                       |
| milk yield – Holstein cows       | -37.6  | 2.19x10 <sup>-3</sup>  | 0.001                 |
| milk yield – Holstein bulls      | -40.3  | 3.17x10 <sup>-3</sup>  | 0.003                 |
| milk yield – Jersey cows         | -45.2  | 3.26x10 <sup>-3</sup>  | 0.002                 |

That is the allele that *increases* expression of SLC27A1 (an antiporter):

biosciences

research

- 1. Increases phosphorus concentration
- 2. Decreases milk yield

(Kemper et al)

# Solutions

Gene expression data gene cis eQTL splicing cis eQTL exon cis eQTL





# Phenotypic differences due to splicing

33

 Human Tau gene splicing related to the Alzheimer's disease





Q-Q plot of multiple sclerosis GWAS p-values





# Overlap between eQTL and milk QTL (Ruidong Xiang)





AGRICULTURE VICTORIA

Example: FUK, chr 18, fat yield (Irene van den Berg)



# Solutions

Include target breed in training population

Use denser SNP panels or sequence

Use Bayesian statistical method not GBLUP

Multi-trait analysis e.g. gene expression data

Use functional annotation of genome





# SNP effects at cellular level

• Quantify the impact of a mutation on gene expression levels







#### Genomic prediction – Milk (Iona MacLeod)

• BayesR

|           | 0.0   | 0.0001 | 0.001  | 0.01   |
|-----------|-------|--------|--------|--------|
|           | 1     | 2      | 3      | 4      |
| Total SNP | Zero  | Tiny   | Small  | Medium |
| 905.813   | 99.3% | 0.69%  | 0.004% | 0.001% |



AGRICULTURE VICTORIA

• BayesRC

|              |                      | 0.0   | 0.0001 | 0.001 | 0.01   |           |
|--------------|----------------------|-------|--------|-------|--------|-----------|
|              |                      |       |        |       |        | Variance  |
| SNP Class    | No. SNP              | 1     | 2      | 3     | 4      | explained |
| Lact genes + |                      |       |        |       |        |           |
| NSC          | 3768 ( <b>0.4%</b> ) | 95.0% | 4.3%   | 0.58% | 0.12%  | 11%       |
| Lact other   | 57722 ( <b>6%</b> )  | 99.3% | 0.7%   | 0.05% | 0.004% | 12%       |
|              | 847905               |       |        |       |        | 77%       |
| All others   | (93%)                | 99.5% | 0.5%   | 0.01% | 0.000% | ///0      |



#### Cattle stature (Aniek Bouwman, Ben Hayes et al)

| Annotation class        | Number |
|-------------------------|--------|
| intergenic_variant      | 83     |
| upstream_gene_variant   | 11     |
| 5_prime_UTR_variant     | 1      |
| intron_variant          | 55     |
| missense_variant        | 5      |
| downstream_gene_variant | 8      |
| ChiP-SEQ peaks*         | 8      |
| WBC eQTL                | 10     |





## The bad news

Accuracy only improves a little

You need to capture a high proportion of total variance





# Conclusion

Data from the target breed is the most useful

But, training data from other breeds helps

Advantage to use sequence data and Bayesian method

Sequence imputation loses accuracy

Identify near perfect markers and genotype them directly

Expression data and functional annotation helps select best variants



