The use of multi-breed reference populations and
multi-omic data
to maximize accuracy of genomic prediction
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Introduction

GEBV accuracy is low if
reference population is small, or
target populations is distantly related to training population

Training populations within breed are too small
numerically small breed
hard to measure traits eqg FCE
Therefore, use multi-breed training population

Training on a different breed to target A low accuracy

Aim = Accurate GEBVs for a breed with a small training population
based on a multi-breed training population
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Do QTL segregate across breeds?(Kath Kemper)
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Do QTL segregate across breeds?

Across 11 QTL, length of conserved haplotype (0.4kb-55kb)

around mutation suggest age of QTL mutations varies ~ 2,000
to 50,000 generations old

Prior to breed formation

QTL can and do segregate across breeds, although drift and
selection can result in fixation



Age of myostatin mutations (501 10 gen)
( OORour ke et al)
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Why are multi-breed GEBVs hard?

SNP x breed interactions
differences in LD phase between breeds
QTL x breed interactions
Due to non-additive gene action
typically small variances
equivalent to sire x breed interactions
typically small
Low accuracy even in simulation

Differences in allele frequency
Fsr IS low
QTL segregate across breeds



Why are multi-breed GEBVs hard?

LD phase differs between breeds

Within breed GEBVs estimate the effect of large
chromosome segments

This works due to LD within a breed

Effective number of chromosome segments =
5000

That is, segments 600 kb long
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Why are multi-breed GEBVs hard?

Within breed GEBVs estimate the effect of large
chromosome segments

This works due to LD within a breed

Effective number of chromosome segments =
5000

That Is, segments 600 kb long

Across breeds conserved segments are much
smaller (x10 smaller)



Solutions

Increase size of training population

Include target breed in training population
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Aussie Reds 114 Bulls

Real or imputed 630K
SNP for all individuals

Jersey 1044 bulls, 4232 cows



Accuracy of Bayes R (Irene van den Berg)
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Solutions

Increase size of training population
Include target breed in training population

Use denser SNP panels or sequence
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Variance explained by SNPs and sequence
(lona Macleod)

Proportion of Total Genetic Variance Explained by SNP and Pedigree:
BayesR (Mixed Hol & Jer)
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Economic Development,
Jobs, Transport
and Resources

Harnessing the power of whole-genome
seguence:

first global report of improved genomic

rediction accuracy using sequence data in

sheep

!a:MacLeod, Bolormaa Sunduimijid, Majid Khansefid,
g -;q_“rew Swan, Julius van der Werf & Hans Daetwyler
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Number of Animals

Number of Animals

Composition of animals in Genomic Prediction Reference

Set
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Validation sets- low relationships with Ref.:

1. Merino
2. Merino x Border Leicester F1
Composition of animals in Discovery GWAS $et
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TRAITS

Breed

BorderLeicester_Composite_crossbred
BorderLeicester_Merino_crossbred
BorderLeicester_crossbred
BorderLeicester_pure

. Composite_crossbred

. Coopworth_pureANDcrossbred

Corriedale_pureANDcrossbred

. DorperANDWhiteDorper_pureANDcrossbred
MaternalBreeds_pureANDcrossbred
. MeatBreeds_pureANDcrossbred

. Merino_pure

. PollDorset_Merino_crossbred

. PollDorset_pure
PollDorset_pureANDcrossbred
Research_pureANDcrossbred

. SammANDDohneMerino_pureANDcrossbred
Southdown_pureANDcrossbred

. Suffolk_pureANDcrossbred

Texel_pureANDcrossbred

. WhiteSuffolk_pureANDcrossbred



GWAS i Carcass Fat Depth (ccfat)
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Meat Traits:
GBLUP Accuracy - Merino x Border Leicester
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Solutions

Increase size of training population
Include target breed in training population
Use denser SNP panels or sequence

Use Bayesian statistical method not GBLUP
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