

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Can genomics enable genetic evaluations for smallholder farmers?

Owen Powell¹, R. Chris Gaynor¹, Janez Jenko¹, Gregor Gorjanc¹, Raphael Mrode^{2,3}, & John M. Hickey¹

¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian EH25 9RG, UK
²Livestock Genetics, International Livestock Research Institute (ILRI), P.O. Box 30197 Nairobi 00100, Kenya
³Scotland Rural College, The Roslin Institute Building, Easter Bush Research Centre, Midlothian EH25 9RG, UK

Milk yields of \approx 3 L of milk per day¹

Account for \approx 70% of milk production¹

Poor penetrance of breeding practices.

Highly heterogeneous environment.

Mixed farming (crops, 1-5 cows)

Kenyan Smallholders

~3-5 acres of land.

- Low Al use.

Weaker breeding & production infrastructure.

Breeding hasn't been effective in this system

Kenyan Smallholders

- Low Al use.
- Small herd size.
- Weak Connectedness
- Highly Heterogeneous environments.
- Small herd size.

Advanced Economies

- High AI.
- Large herd size.
- Strong Connectedness
- Homogeneous environments.

Estimation of Breeding Values

ID	HerdID	BV	Residual	Pheno
1	1			-2.067
2	1			-0.201
3	2			1.435
4	1			2.382
5	2			-0.687

Phenotype = *HerdID* + *BV* + *Residual*

HerdID included to correct data for environment/herd.

PBLUP versus GBLUP

- Currently:
 - Herd size too small
 - Connectedness too weak.
- Solve connectedness, the rest will follow.
- Genomics can strengthen connectedness by capturing shared haplotypes blocks across herds.

PBLUP versus GBLUP

- Currently:
 - Herd size too small
 - Connectedness too weak.
- Solve connectedness, the rest will follow.
- Genomics can strengthen connectedness by capturing shared haplotypes blocks across herds.

In small holders systems:

1) Can GBLUP separate environment and genetics?

2) Should herd be fixed or random effects?

3) Impact of connectedness?

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Data Generation

BurnIn

- Effective Population Size (Ne) ≈100
- Sires per generation : 50
- Dams per generation : 500
- Population size : 1000

Recent Breeding

- Sires per generation: 50 -> 1000
- Dams per generation: 20000
- Select on TBV.
- Final generation subsets were created varying:
 - Population Size: 1000 -> 4000
 - Herd Size: 1 -> 32

Coalescent Population History

Historic Breeding (4 Generations)

Recent Past Breeding (3 Generations)

Dams

(4,000)

Bayesian Generalized Linear Regression (BGLR)²

- Populations of; 1000, 2000, 4000.
- Analysed each dataset with three P/GBLUP models;
 - 1. excluding herd effect,
 - 2. herd as a fixed effect,
 - 3. herd as a **random effect**.
- 12000 Iterations, 2000 BurnIn.

2. Pérez, P. & De Los Campos, G., 2014.

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Results

PBLUP versus GBLUP

Effect of Method on EBV Accuracy

Fixed or Random

Fixed or Random - Small Herd Sizes

Connectedness

Population Size	Herd Size	Offspring per Sire	Accuracy	se
4000	2	4	0.580	0.007
		8	0.575	0.007
		16	0.588	0.006
		40	0.609	0.005
		80	0.635	0.008

Conclusions

- GBLUP is able to separate environment and genetics and outperform PBLUP estimates.
- At low herd sizes, herd should be modelled as random.
- Increasing the number of offspring per sire used, increases the probability of shared haplotypes across herds.
- Genomic evaluations can exploit the existing architecture of smallholder farming systems.

Future Work

- Accuracy of Genomic Prediction of:
 - Sons
 - International Sires
- Impact of non-random association of sire breeding value with herd value on accuracy and bias when modelling herd as a random effect.

Acknowledgements

John Hickey, Gregor Gorjanc, Andrew Whalen, Chris Gaynor, Christian Werner, Christos Dadousis, Daniel Money, David Wilson, Jaap Buntjer, Janez Jenko, Joanna Warner, Jon Bancic, Lorena Batista, Martin Johnsson, Owen Powell, Roberto Antolin, Roger Ros Freixedes, Serap Gonen, Stefan Hoj-Edwards.

