SNP based parentage verification via constraint non-linear optimisation

Vinzent Boerner and Robert Banks

Animal Genetics and Breeding Unit (AGBU), University of New England Armidale, 2351, NSW, Australia

Interbull meeting, 24-28/10/2016, Puerto Varas, Chile

R. Banks (AGBU)

• "historic" parentage verification (PV)

< ロ > < 回 > < 回 > < 回 > < 回 > << 回 > <

• "historic" parentage verification (PV)

based on short tandem repeats (micro satellites,STRs)

イロト イロト イヨト イヨト

• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]

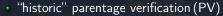
• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)

(ロ) (四) (空) (三)

Background

• "historic" parentage verification (PV)


- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)

Background

• "historic" parentage verification (PV)


- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.

Background


- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms

Background


- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)

Background

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)
 - PV still mainly based on STRs

Background

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)
 - PV still mainly based on STRs
 - double genotyping cost for PV and GS

Background

• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)
 - PV still mainly based on STRs
 - double genotyping cost for PV and GS
 - "quick and dirty" remedy \rightarrow impute STRs from SNPs

Background

• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)
 - PV still mainly based on STRs
 - double genotyping cost for PV and GS
 - "quick and dirty" remedy \rightarrow impute STRs from SNPs
- long-term approach

Background

• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.
- mid 2000 \rightarrow Single Nucleotide Polymorphisms
 - now dominant marker class for genotyping \rightarrow genomic selection (GS)
 - PV still mainly based on STRs
 - double genotyping cost for PV and GS
 - "quick and dirty" remedy \rightarrow impute STRs from SNPs
- long-term approach
 - impute SNPs from STRs (feasible???)

Background

• "historic" parentage verification (PV)

- based on short tandem repeats (micro satellites,STRs)
- statistical approaches[Jones et al., 2010]
 - total exclusion (who cannot be mum or dad)
 - partial exclusion (who is most likely mun or dad)
 - etc.

• mid 2000 \rightarrow Single Nucleotide Polymorphisms

- now dominant marker class for genotyping \rightarrow genomic selection (GS)
- PV still mainly based on STRs
- double genotyping cost for PV and GS
- "quick and dirty" remedy \rightarrow impute STRs from SNPs
- long-term approach
 - impute SNPs from STRs (feasible???)
 - use SNPs for parentage verification directly

SNP parentage verification \rightarrow not too easy

• bi-allelic marker

< ロ > < 回 > < 回 > < 回 > < 回 > << 回 > <

SNP parentage verification \rightarrow not too easy

• bi-allelic marker

o how many SNPs???

4日> 4日> 4日> 4日> 4日>

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]
- which marker

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]

which marker

- different platforms
- customisation vs. transferability

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis
 - exclusion via opposing homozygosity[Wiggans et al., 2009, Hayes, 2011]

SNP parentage verification \rightarrow not too easy

bi-allelic marker

- o how many SNPs???
- recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis
 - exclusion via opposing homozygosity[Wiggans et al., 2009, Hayes, 2011]
 - \circ "relies" on genotyping errors \rightarrow to be minimised

SNP parentage verification \rightarrow not too easy

- bi-allelic marker
 - o how many SNPs???
 - recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis
 - exclusion via opposing homozygosity[Wiggans et al., 2009, Hayes, 2011]
 - \circ "relies" on genotyping errors ightarrow to be minimised
 - parents must be among the putative parents \rightarrow cannot be assured

SNP parentage verification \rightarrow not too easy

- bi-allelic marker
 - o how many SNPs???
 - recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis
 - exclusion via opposing homozygosity[Wiggans et al., 2009, Hayes, 2011]
 - \circ "relies" on genotyping errors \rightarrow to be minimised
 - parents must be among the putative parents \rightarrow cannot be assured
 - likelihood based method adapted from STRs[Boichard et al., 2014]

SNP parentage verification \rightarrow not too easy

- bi-allelic marker
 - o how many SNPs???
 - recommendation: +500[McClure et al., 2015]
- which marker
 - different platforms
 - customisation vs. transferability
- statistical analysis
 - exclusion via opposing homozygosity[Wiggans et al., 2009, Hayes, 2011]
 - \circ "relies" on genotyping errors \rightarrow to be minimised
 - parents must be among the putative parents \rightarrow cannot be assured
 - likelihood based method adapted from STRs[Boichard et al., 2014]
 - difficult to reject putative parents when N_{SNP} <100

General idea

resort to the linear model

animals marker $= 0.5 \times mum's marker + 0.5 \times dad's marker + mendelian sampling$

(미) (명) (말) (말)

General idea

resort to the linear model

animals marker $= 0.5 \times mum's marker + 0.5 \times dad's marker + mendelian sampling$

more mathematical: y = Xb + e

< ロ > < 回 > < 三 > < 三 > 三

General idea

resort to the linear model

animals marker $= 0.5 \times mum$'s marker+ $0.5 \times dad$'s marker+ mendelian sampling

more mathematical: y = Xb + e

- y : genotype of an animal with one/both parents unknown
- X : matrix of column vectors of genotypes from putative parents
- b : vector of regression coefficients
- e : non-explainable residual

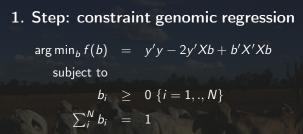
Simple genomic regression

Solve:

 $\arg \min_b f(b) = y'y - 2y'Xb + b'X'Xb \rightarrow \text{simple least square}$

(미) (명) (말) (말)

Simple genomic regression


Solve:

 $\arg \min_b f(b) = y'y - 2y'Xb + b'X'Xb \rightarrow \text{simple least square}$

Too simple to be useful:

- b's can have any value ightarrow hard/impossible to interpret
- every b_i can be non-zero \rightarrow who is the parent?

Make it work

Make it work

1. Step: constraint genomic regression arg min_b f(b) = y'y - 2y'Xb + b'X'Xbsubject to $b_i \ge 0 \{i = 1, .., N\}$ $\sum_{i}^{N} b_i = 1$

2. Step: augment X

o column vectors of genotypes of putative parents

population allele frequency vector

Make it work

How to solve:

• 2-step iterative non-linear optimisation solver (NLOpt library[Johnson, 2014])

(日) (월) (일) (일)

Make it work

How to solve:

- 2-step iterative non-linear optimisation solver (NLOpt library[Johnson, 2014])
 - global minimisation: augmented Lagrangian method

(미) (명) (말) (말)

Make it work

How to solve:

- 2-step iterative non-linear optimisation solver (NLOpt library[Johnson, 2014])
 - global minimisation: augmented Lagrangian method
 - local minimisation: method of moving asymptotes

Make it work

How to solve:

- 2-step iterative non-linear optimisation solver (NLOpt library[Johnson, 2014])
 - global minimisation: augmented Lagrangian method
 - local minimisation: method of moving asymptotes

Results evaluation

b's assign parentage if $> \frac{1}{3} \rightarrow$ assures number of parents ≤ 2

Make it work

How to solve:

- 2-step iterative non-linear optimisation solver (NLOpt library[Johnson, 2014])
 - global minimisation: augmented Lagrangian method
 - local minimisation: method of moving asymptotes

Results evaluation

- *b*'s assign parentage if $> \frac{1}{3} \rightarrow$ assures number of parents ≤ 2
- if both true parents are absent $\rightarrow b$ for population allele frequency vector approaches 1

Test data set

SNP data

• 4612 genotypes of Australian Angus beef cattle

SE!

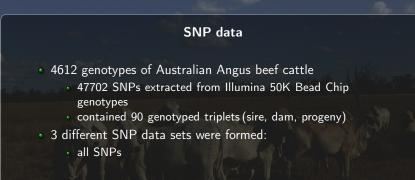
SNP data

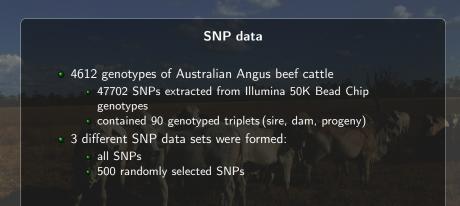
 4612 genotypes of Australian Angus beef cattle
 47702 SNPs extracted from Illumina 50K Bead Chip genotypes

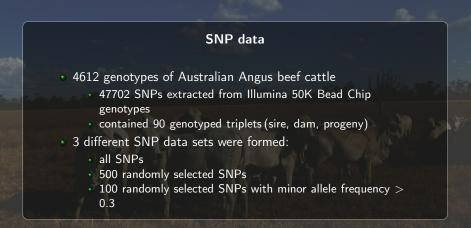
SE!

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SNP data


- 4612 genotypes of Australian Angus beef cattle
 - 47702 SNPs extracted from Illumina 50K Bead Chip genotypes
 - contained 90 genotyped triplets (sire, dam, progeny)


< □ > < 同 > < 回 > < 回 > < 回 >



4612 genotypes of Australian Angus beef cattle 47702 SNPs extracted from Illumina 50K Bead Chip genotypes

- contained 90 genotyped triplets (sire, dam, progeny)
- 3 different SNP data sets were formed:

Test data set

Equation data

- $y \rightarrow$ progeny from triplet
- $X \rightarrow$ three different types per y

Test data set

Equation data

- $y \rightarrow$ progeny from triplet
- $X \rightarrow$ three different types per y

 X_P

sire

dam

- 10 randomly selected animals
- population allele frequency

R. Banks (AGBU)

(미) (종) (종) (종)

Test data set

Equation data

- $\circ y \rightarrow$ progeny from triplet
- $X \rightarrow$ three different types per y

X_P

sire

- dam
- 10 randomly selected animals
- population allele frequency

. X_D

• dam

 11 randomly selected animals

 population allele frequency

(미) (명) (말) (말)

Test data set

Equation data

- $y \rightarrow$ progeny from triplet
- X
 ightarrow three different types per y

sire

- dam
- 10 randomly selected animals
- population allele frequency

 X_D

• dam

- 11 randomly selected animals
- population allele frequency

X_R 12 randomly selected animals

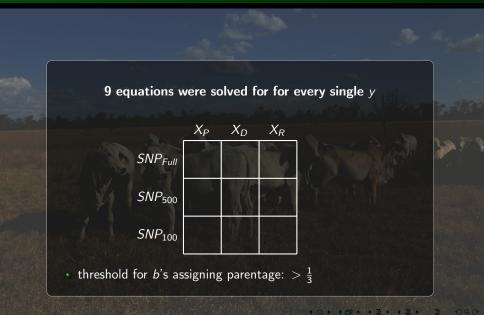
 population allele frequency

Test data set

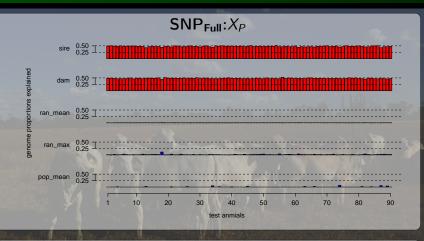
Equation data

- $y \rightarrow$ progeny from triplet
- X
 ightarrow three different types per y
 - X_P
- sire
- dam
- 10 randomly selected animals
- population allele frequency

 X_D


• dam

- 11 randomly selected animals
- population allele frequency


- X_R • 12 randomly
 - selected animals
- population allele frequency

- randomly selected animals: excluded parents, full sibs and half sibs; re-sampled for every y
- population allele frequency vector was calculated excluding genotypes in X and y

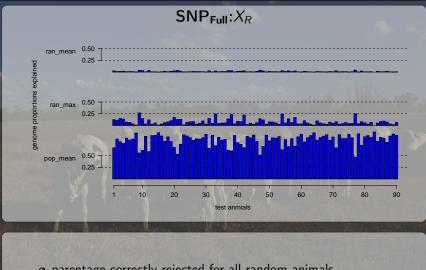
Trial summary

Results

• all parents correctly identified

R. Banks (AGBU)

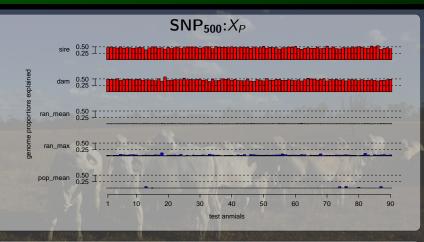
(口) (四) (豆) (豆) (豆)


Results

- all dams correctly identified
- · parentage correctly rejected for all random animals

・ロト ・ 日ト ・ 日ト

Results

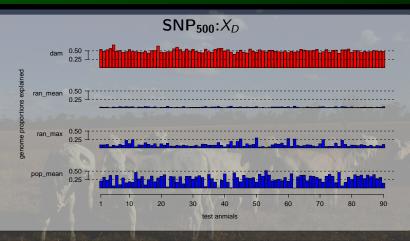

• parentage correctly rejected for all random animals

R. Banks (AGBU)

SNP based parentage verification

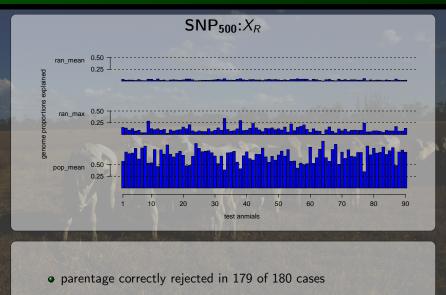
(日) (日) (日)

Results



• all parents correctly identified

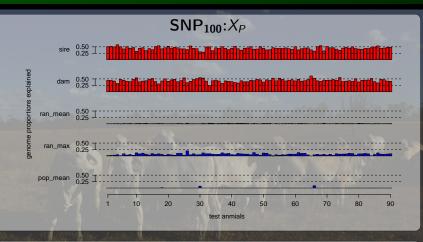
R. Banks (AGBU)


(口) (四) (豆) (豆) (豆)

Results

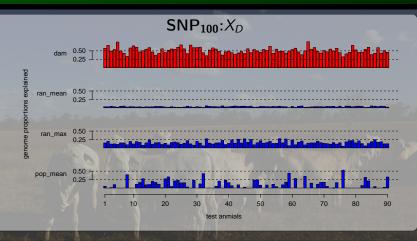
- all dams correctly identified
- · parentage correctly rejected for all random animals

Results



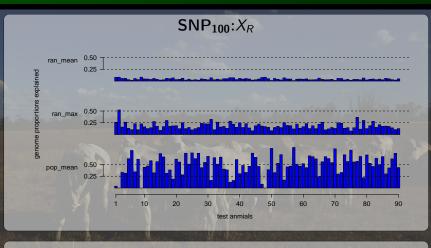
R. Banks (AGBU)

SNP based parentage verification


< □ > < □ > < □ > < □ > < □ >

Results

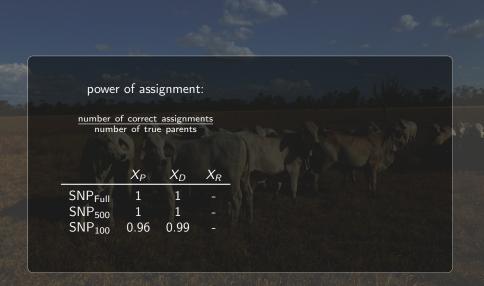
- parents correctly identified in 173 of 180 cases
- · parentage correctly rejected for all random animals


Results

- dams correctly identified in 89 of 90 cases
- · parentage correctly rejected for all random animals

SNP based parentage verification

Results



• parentage correctly rejected in 178 of 180 cases

R. Banks (AGBU)

SNP based parentage verification

Results summary

イロト イロト イヨト

Results summary

						inthe c	_	
power of assignment:				power of exclusion:				
	number of correct assignments number of true parents				$1-rac{number\ of\ wrong\ assignments}{number\ of\ possible\ parents}$			
	X _P	X _D	X_R		X_P	X_D	X_R	
SNP _{Full}	Х _Р 1	$\frac{X_D}{1}$	X _R	SNP _{Full}	$\frac{X_P}{1}$	$\frac{X_D}{1}$	$\frac{X_R}{1}$	
SNP _{Full} SNP ₅₀₀		1.12	X _R - -	SNP _{Full} SNP ₅₀₀	1	199302-36	Contractor and the second	

▲□→ ▲□→ ▲三→ ▲三→ 三 りへで

Discussion

• general performance

< 口> < 回> < 至> < 三> < 三> 三

- general performance
 - almost perfect assignment for $N_{SNPs} \ge 500$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- general performance
 - almost perfect assignment for $N_{SNPs} \ge 500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)

(미) (명) (말) (말)

Discussion

- general performance
 - \circ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set

Discussion

- general performance
 - \circ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast

Discussion

- general performance
 - almost perfect assignment for $N_{SNPs} \ge 500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)

(ロ) (四) (空) (三)

Discussion

- general performance
 - almost perfect assignment for $N_{SNPs} \ge 500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)

Discussion

- general performance
 - $_{\circ}$ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity

(ロ) (四) (空) (三)

Discussion

- general performance
 - \circ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity

does not rely on true parents being among putative parents

Discussion

- general performance
 - $_{\circ}$ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors

Discussion

- general performance
 - \circ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors
- compared to likelihood based methods

Discussion

- general performance
 - $_{\circ}$ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors
- compared to likelihood based methods
 - better performance for exclusion for N_{SNPs} ≤100 (compared to Boichard et al. [2014])

Discussion

- general performance
 - $_{\circ}$ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors
- compared to likelihood based methods
 - better performance for exclusion for N_{SNPs} ≤100 (compared to Boichard et al. [2014])
- possible significance test for solutions:

Discussion

- general performance
 - \circ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors
- compared to likelihood based methods
 - better performance for exclusion for N_{SNPs} ≤100 (compared to Boichard et al. [2014])
- possible significance test for solutions:
 - test $e'e|b_i > \frac{1}{3}$ against its empirical distribution constructed from e's when one or both parents were in X

Discussion

- general performance
 - $_{\circ}$ almost perfect assignment for $N_{SNPs}{\geq}500$
 - almost perfect exclusion for N_{SNPs} ≤100 (more important)
 - automatically scales to any input data set
 - fast
 - SNP_{50k}: 0.1 real time seconds per animal (INTEL i7 3770)
 - SNP₅₀₀: 0.003 real time seconds per animal (INTEL i7 3770)
- compared to exclusion via opposing homozygosity
 - does not rely on true parents being among putative parents
 - does not rely on genotyping errors
- compared to likelihood based methods
 - better performance for exclusion for N_{SNPs} ≤100 (compared to Boichard et al. [2014])
- possible significance test for solutions:
 - test $e'e|b_i > \frac{1}{3}$ against its empirical distribution constructed from e's when one or both parents were in X
 - may also allow to reject "tricky" sets of putative parents containing progeny, full sibs or half sibs

(ロ) (四) (日) (日)

Acknowledgements

- This work was funded by Meat and Livestock Australia (Project B.BFG.0050).
 - The authors thank various Australian Angus breeders for supplying genotypes.

References

- Didier Boichard, L Barbotte, and L Genestout. Accurassign, software for accurate maximumlikelihood parentage assignment. In *Proc. 10th. WCGALP, Vancouver, Canada, August*, page np, 2014.
- BJ Hayes. Technical note: Efficient parentage assignment and pedigree reconstruction with dense single nucleotide polymorphism data. J. Dairy Sci., 94(4):2114–2117, 2011.
- Steven G Johnson. The nlopt nonlinear-optimization package. 2011. URL http://ab-initio. mit. edu/nlopt, 2014.
- Adam G Jones, Clayton M Small, Kimberly A Paczolt, and Nicholas L Ratterman. A practical guide to methods of parentage analysis. *Mol. Ecol. Resour.*, 10(1):6–30, 2010.
- MC McClure, J McCarthy, P Flynn, R Weld, M Keane, K O'Connell, M Mullen, S Waters, JF Kearney, Z Kowalski, et al. Snp selection for nationwide parentage verification and identification in beef and dairy cattle. *ICAR Technical Series*, (19):175–181, 2015.
- G. R. Wiggans, T. S. Sonstegard, P. M. VanRaden, L. K. Matukumalli, R. D. Schnabel, J. F. Taylor, F. S. Schenkel, and C. P. Van Tassell. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the united states and canada. J. Dairy Sci., 92(7):3431-3436, Jul 2009. doi: 10.3168/jds.2008-1758. URL http://dx.doi.org/10.3168/jds.2008-1758.