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Background

Background

“historic” parentage verification (PV)

based on short tandem repeats (micro satellites,STRs)
statistical approaches[Jones et al., 2010]

total exclusion (who cannot be mum or dad)
partial exclusion (who is most likely mun or dad)
etc.

mid 2000 → Single Nucleotide Polymorphisms

now dominant marker class for genotyping → genomic
selection (GS)
PV still mainly based on STRs
double genotyping cost for PV and GS
“quick and dirty” remedy → impute STRs from SNPs

long-term approach

impute SNPs from STRs (feasible???)
use SNPs for parentage verification directly
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Background

SNP parentage verification → not too easy

bi-allelic marker

how many SNPs???
recommendation: +500[McClure et al., 2015]

which marker

different platforms
customisation vs. transferability

statistical analysis

exclusion via opposing homozygosity[Wiggans et al., 2009,
Hayes, 2011]

“relies” on genotyping errors → to be minimised
parents must be among the putative parents → cannot be
assured

likelihood based method adapted from STRs[Boichard et al.,
2014]

difficult to reject putative parents when NSNP<100
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Methods

General idea

resort to the linear model
animals marker = 0.5×mum’s marker+

0.5× dad’s marker+
mendelian sampling
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Methods

General idea

resort to the linear model
animals marker = 0.5×mum’s marker+

0.5× dad’s marker+
mendelian sampling

more mathematical: y = Xb + e

y : genotype of an animal with one/both parents unknown

X : matrix of column vectors of genotypes from putative parents

b : vector of regression coefficients

e : non-explainable residual
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Methods

Simple genomic regression

Solve:

argminb f (b) = y ′y − 2y ′Xb + b′X ′Xb → simple least square
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Simple genomic regression

Solve:

argminb f (b) = y ′y − 2y ′Xb + b′X ′Xb → simple least square

Too simple to be useful:

b’s can have any value → hard/impossible to interpret
every bi can be non-zero → who is the parent?
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Methods

Make it work

1. Step: constraint genomic regression

argminb f (b) = y ′y − 2y ′Xb + b′X ′Xb

subject to

bi ≥ 0 {i = 1, .,N}∑N
i bi = 1
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1. Step: constraint genomic regression

argminb f (b) = y ′y − 2y ′Xb + b′X ′Xb

subject to

bi ≥ 0 {i = 1, .,N}∑N
i bi = 1

2. Step: augment X

column vectors of genotypes of putative parents
population allele frequency vector
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Methods

Make it work

How to solve:

2-step iterative non-linear optimisation solver (NLOpt
library[Johnson, 2014])

global minimisation: augmented Lagrangian method
local minimisation: method of moving asymptotes
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Results evaluation

b’s assign parentage if > 1
3 → assures number of parents ≤ 2

if both true parents are absent → b for population allele
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Methods

Test data set

SNP data

4612 genotypes of Australian Angus beef cattle

47702 SNPs extracted from Illumina 50K Bead Chip
genotypes
contained 90 genotyped triplets (sire, dam, progeny)

3 different SNP data sets were formed:

all SNPs
500 randomly selected SNPs
100 randomly selected SNPs with minor allele frequency >
0.3
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Methods

Test data set

Equation data

y → progeny from triplet
X → three different types per y
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Test data set

Equation data

y → progeny from triplet
X → three different types per y

XP

sire
dam
10 randomly
selected animals
population allele
frequency

XD

dam
11 randomly
selected animals
population allele
frequency

XR

12 randomly
selected animals
population allele
frequency

randomly selected animals: excluded parents, full sibs and half sibs;
re-sampled for every y

population allele frequency vector was calculated excluding genotypes
in X and y
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Methods

Trial summary

9 equations were solved for for every single y

SNP500

SNPFull

SNP100

XDXP XR

threshold for b’s assigning parentage: > 1
3
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Results

Results
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Results

Results summary

power of assignment:

number of correct assignments
number of true parents

XP XD XR

SNPFull 1 1 -
SNP500 1 1 -
SNP100 0.96 0.99 -
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Results summary

power of assignment:

number of correct assignments
number of true parents

XP XD XR

SNPFull 1 1 -
SNP500 1 1 -
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Discussion

general performance

almost perfect assignment for NSNPs≥500
almost perfect exclusion for NSNPs≤100 (more important)
automatically scales to any input data set
fast

SNP50k: 0.1 real time seconds per animal (INTEL i7 3770)
SNP500: 0.003 real time seconds per animal (INTEL i7 3770)

compared to exclusion via opposing homozygosity

does not rely on true parents being among putative parents
does not rely on genotyping errors

compared to likelihood based methods

better performance for exclusion for NSNPs≤100 (compared to
Boichard et al. [2014])

possible significance test for solutions:

test e′e|bi > 1
3 against its empirical distribution constructed

from e’s when one or both parents were in X
may also allow to reject “tricky” sets of putative parents
containing progeny, full sibs or half sibs
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