

Novel phenotypes to improve the rate of genetic gain in fertility for dairy cattle in New Zealand

<u>M Stephen</u>, A Young, J Bryant, P Amer, B Dela Rue, N Steele, C Phyn, S Meier & C Burke



# **Research Objective**

Genetic gain in fertility is accelerated through increased accuracy and reliability of sires using novel, earlier-in-life predictors of cow fertility.





# **Talk Overview**

- Fertility Research Herd (pilot)
- Traits of Interest
- Large Scale Validation Study
  - Animal Selection
  - Phenotyping Protocols
  - Future Work

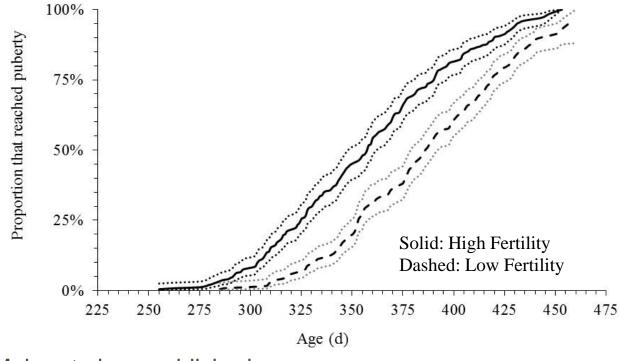




# **Fertility Research Herd**

- ~500 Holstein-Friesian cows: half low and half high Fertility BV
- Translated to extreme divergence in reproductive phenotypes
- Provides a model to observe novel phenotypes that could be predictive of fertility




## **Traits of Interest**

- Onset of Puberty
- Anogenital Distance (AGD)





### **Onset of Puberty**









# **Onset of Puberty**

### Heritability of 30% (Dennis et al, 2018)

| Trait                 | High FBV (n=275) | Low FBV (n=249) | SD | P val. |
|-----------------------|------------------|-----------------|----|--------|
| Age at puberty (d)    | 358              | 379             | 6  | <0.01  |
| LWT at puberty (kg)   | 271              | 296             | 4  | <0.01  |
| Percentage mature LWT | 51               | 55              | 1  | <0.01  |







# **Anogenital distance (AGD)**

AGD is normally distributed, highly variable & moderately heritable





J. Dairy Sci. 100:9815–9823 https://doi.org/10.3168/jds.2017-13033 © 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association<sup>®</sup>. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

#### Characterization of anogenital distance and its relationship to fertility in lactating Holstein cows

M. Gobikrushanth,\* T. C. Bruinjé,\* M. G. Colazo,† S. T. Butler,‡ and D. J. Ambrose\*†<sup>1</sup> <sup>1</sup>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 †Livestock Research and Extension Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada T6H 5T6 ‡Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996

Canadian HF - association with cow fertility



J. Dairy Sci. 102:1–10 https://doi.org/10.3168/jds.2018-15552 © American Dairy Science Association<sup>®</sup>, 2019.

The relationship between anogenital distance and fertility, and genome-wide associations for anogenital distance in Irish Holstein-Friesian cows

M. Gobikrushanth,<sup>1,2</sup> D. C. Purfield,<sup>2</sup> J. Kenneally,<sup>2</sup> R. C. Doyle,<sup>2</sup> S. A. Holden,<sup>2</sup> P. M. Martinez,<sup>2</sup> E. Rojas Canadas,<sup>2</sup> T. C. Bruinjé,<sup>1</sup> M. G. Colazo,<sup>3</sup> D. J. Ambrose,<sup>1,3</sup> and S. T. Butler<sup>2</sup>\* <sup>1</sup>Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 <sup>2</sup>Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996 <sup>3</sup>Livestock Research and Extension Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada T6H 5T6







## **Validation Study**



# Improve statistical power to validate and extend key findings of the pilot study





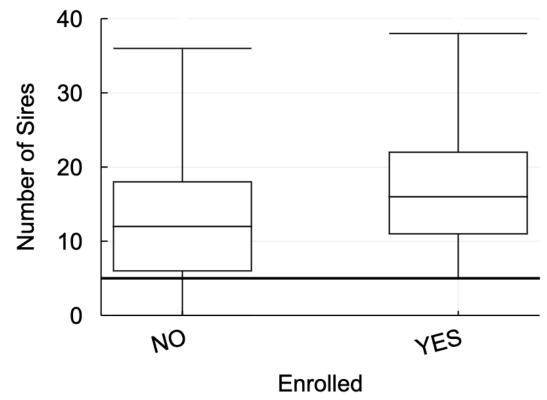
# Validation Study



- Variances/Heritability's
  - Age of puberty (P4 measures, Pedometers)
  - AGD
- Covariances
  - Lactation (August 2020 to June 2021)
  - Fertility (October 2020)
- GWAS
  - Age of puberty
  - AGD







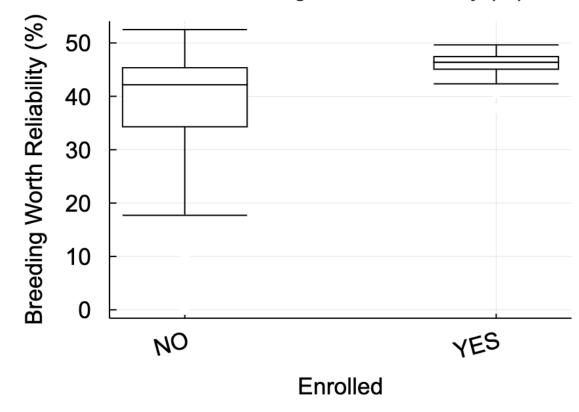

# **Enrollment Criteria**

- Excellent data recording
- Variety of sires represented
- Majority Friesian







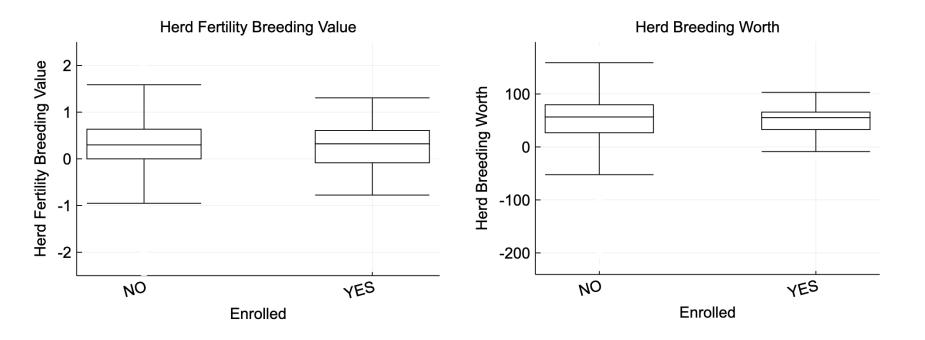

Number of Sires Represented







Herd Breeding Worth Reliability (%)

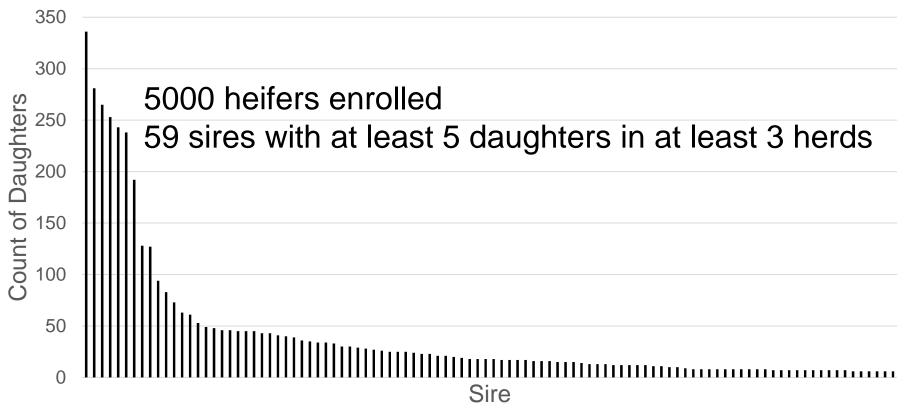





© DairyNZ 2019










#### © DairyNZ 2019



#### Sire Representation







# **Phenotyping - Puberty**

- Three blood samples for plasma progesterone (P4) – monthly intervals
  - Weekly is optimal but not practical
  - Expect lower heritability of ~18%\*
  - Sufficient to meet our research objective\*
- First samples timed for when 50% of the animals have reached puberty

\*Amer & Dennis, AbacusBio

© DairyNZ 2019





# **Phenotyping - Puberty**

Subset of 2000 heifers to wear pedometers for three months

- Potential for wider phenotyping in the future
- Higher resolution than P4



© DairyNZ 2019



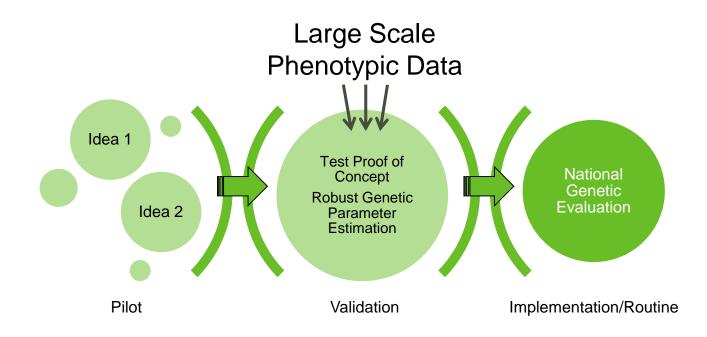
# **Phenotyping – Other**

- Weight / Height (once)
- Anogenital Distance (once)
- Lactation (August 2020 to June 2021)
- Fertility (October 2020)





# Genotyping


Genotyped Weatherby's Versa chip (50k, Illumina)

- Sire verification
- Increased accuracy of breed proportions
- GWAS





### **Future**





# Acknowledgements

Funding

- Ministry of Business, Innovation and Employment (MBIE)
- Farmer Levy (DairyNZ Inc.)

DairyNZ technical team involved in planning and data collection.



# Thank you



#### **Observations: Fertility Research herd**

#### 1<sup>st</sup> lactation - 2017/18 (raw means)

| Parameter (%)                      | High Fertility BV | Low Fertility BV |
|------------------------------------|-------------------|------------------|
| Numbers                            | 257               | 224              |
| 3-week submission rate             | 87                | 48               |
| 6-week in-calf rate                | 67                | 33               |
| Not-in-calf rate (12 weeks mating) | 18                | 42               |

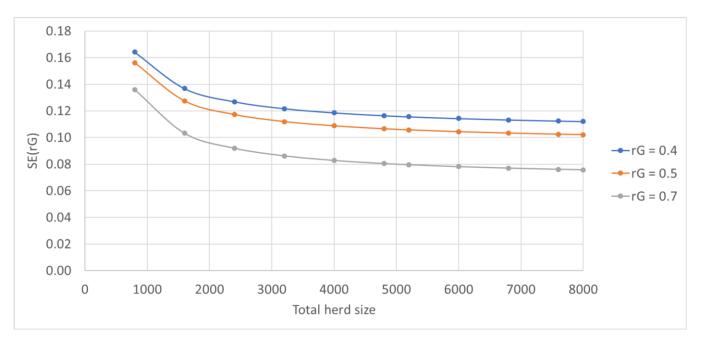
#### 2<sup>nd</sup> lactation - 2018/19 (raw means)

| Parameter (%)                      | High Fertility BV | Low Fertility BV |
|------------------------------------|-------------------|------------------|
| Numbers                            | 204               | 121              |
| 3-week submission rate             | 87                | 55               |
| 6-week in-calf rate                | 74                | 39               |
| Not-in-calf rate (11 weeks mating) | 13                | 44               |





## AGD vs. cow fertility

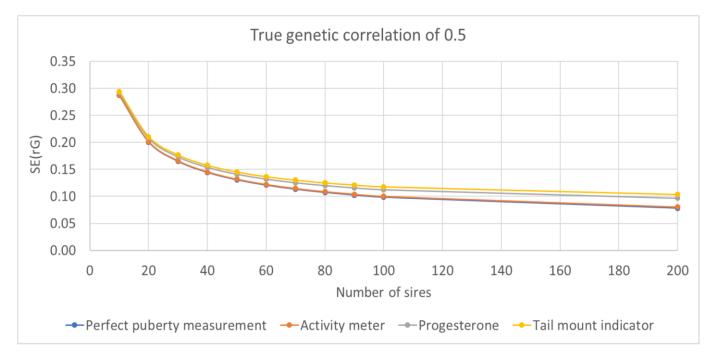

| Fertility traits     | 'Short'<br><105 mm | 'Long'<br>≥105 mm |        |
|----------------------|--------------------|-------------------|--------|
| Number (n)           | 360                | 112               |        |
| 3-wk submission rate | 74 ± 4             | 47 ± 6            | <0.001 |
| 6-wk submission rate | 83 ± 4             | 56 ± 6            | <0.001 |
| 6-wk in-calf rate    | 57 ± 4             | 29 ± 5            | <0.001 |
| Final in-calf rate   | 77 ± 3             | 53 ± 5            | <0.001 |

In <u>this population</u>, AGD is variable, normally distributed, moderately heritable and associated with cow fertility





### Estimating the genetic correlation




SFM estimates based on 80 sires Amer & Dennis, AbacusBio

ABACUSBIO LIMITED



### Number of sires is key to accurate rg



SFM estimates based on 4000 heifers Amer & Dennis, AbacusBio

AbacusBio Limited



### Fertility information from a bull's daughters

| Aug Year O                | Oct Year 1                                 | Aug Year 2                | Oct Year 3                                       | Nov Year 4                                   | Nov Year 5                                                                   | Nov Year 6                                                                                   | Year 7 +                                                                                                             |
|---------------------------|--------------------------------------------|---------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Bull is born              |                                            | Daughters<br>born         |                                                  | Daughter<br>calving                          |                                                                              | CR42 recorded                                                                                |                                                                                                                      |
| •                         | •                                          | •                         | •                                                | •                                            | •                                                                            | •                                                                                            | •                                                                                                                    |
| Parent<br>average<br>only | Bull is mated<br>Parent<br>average<br>only | Parent<br>average<br>only | Puberty<br>measures<br>Parent<br>average<br>only | Parent<br>average +<br>50 puberty<br>records | PM21<br>Parent<br>average +<br>50 puberty<br>records +<br>60 PM21<br>records | Parent<br>average +<br>50 puberty<br>records +<br>60 PM21<br>records +<br>60 CR42<br>records | Widespread<br>CR42<br>Parent<br>average +<br>50 puberty<br>records +<br>500 PM21<br>records +<br>500 CR42<br>records |

**ABACUSBIO LIMITED** 



## What we learnt from SFM

| Phenotype                        | Heritability |  |
|----------------------------------|--------------|--|
| Perfect age at puberty           | 0.36         |  |
| Activity meter with minor errors | 0.33         |  |
| Single progesterone              | 0.07 to 0.1  |  |
| Two progesterone (4 wks apart)   | 0.15         |  |
| Three progesterone (4 wks apart) | 0.18         |  |

\*Modelling accounts for progesterone detected between days 6 and 17 of 21 d cycle Amer & Dennis, AbacusBio

cusbio Limited



### When do we start sampling?

Abacusbio Limited



| Average heifer age (d) | Week 1<br>(% attained<br>puberty) | Week 5<br>(% attained<br>puberty) | Week 9<br>(% attained<br>puberty) | Heritability* |
|------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------|
| Too early              | 244 (2%)                          | 272 (9%)                          | 300 (23%)                         | 0.135         |
| Early                  | 272 (9%)                          | 300 (24%)                         | 328 (43%)                         | 0.180         |
| Little early           | 300 (23%)                         | 328 (43%)                         | 356 (63%)                         | 0.195         |
| Little late            | 328 (43%)                         | 356 (63%)                         | 386 (79%)                         | 0.180         |
| Late                   | 356 (65%)                         | 386 (80%)                         | 414 (90%)                         | 0.128         |
| Very late              | 386 (79%)                         | 414 (88%)                         | 442 (93%)                         | 0.080         |

\*Modelling accounts for progesterone detected between days 6 and 17 of 21 d cycle Amer & Dennis, AbacusBio

Dairynz