

Bavarian State Research Center for Agriculture

Effects of Selective Genotyping and Selective Imputation in Single-Step GBLUP

C. Edel, E.C.G. Pimentel, L. Plieschke, R. Emmerling and K.-U. Götz Institute for Animal Breeding

Motivation

- Single-Step Genomic BLUP frequently results in inflated genomic predictions
- ad hoc remedies were proposed

ω -, τ - scaling
 data-pruning, etc.

however, underlying mechanisms remain unclear

computing the standard H matrix includes an implicit step of imputation (Fernando et al., 2014)

$$\begin{array}{rcl} \mathsf{H} &=& \mathsf{G}_{add} + \mathsf{G}_{est} \\ &=& \begin{bmatrix} \mathsf{A}_{11} - \mathsf{A}_{12} \mathsf{A}_{22} \mathsf{A}_{21} & \mathsf{0} \\ & \mathsf{0} & \mathsf{0} \end{bmatrix} + \begin{bmatrix} \mathsf{A}_{12} \mathsf{A}_{22}^{-1} \mathsf{G} \mathsf{A}_{22}^{-1} \mathsf{A}_{21} & \mathsf{A}_{12} \mathsf{A}_{22}^{-1} \mathsf{G} \\ & \mathsf{G} \mathsf{A}_{22}^{-1} \mathsf{A}_{21} & \mathsf{G} \end{bmatrix} \end{array}$$

'imputation residual'

covariance of observed and imputed gt

computing the standard H matrix includes an implicit step of imputation (Fernando et al., 2014)

$$\begin{aligned} \mathsf{H} &= & \mathsf{G}_{add} + \mathsf{G}_{est} \\ &= & \begin{bmatrix} \mathsf{A}_{11} - \mathsf{A}_{12} \mathsf{A}_{22} \mathsf{A}_{21} & \mathsf{0} \\ & \mathsf{0} & \mathsf{0} \end{bmatrix} + \begin{bmatrix} \mathsf{A}_{12} \mathsf{A}_{22}^{-1} \mathsf{G} \mathsf{A}_{22}^{-1} \mathsf{A}_{21} & \mathsf{A}_{12} \mathsf{A}_{22}^{-1} \mathsf{G} \\ & \mathsf{G} \mathsf{A}_{22}^{-1} \mathsf{A}_{21} & \mathsf{G} \end{bmatrix} \end{aligned}$$

 $A_{12}A_{22}^{-1}(gc-\mu_{gc})$: imputation of gene contents (GC) for **11*** animals (ungenotyped)

computing the standard H matrix includes an implicit step of imputation (Fernando et al., 2014)

Single-step genomic BLUP conceptually comprises two estimation steps

- estimation of gene contents using all observed genotypes
- estimation of gEBV using all phenotypic data

J. Dairy Sci. 100:1–5 https://doi.org/10.3168/jds.2017-12734 © 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Short communication: The role of genotypes from animals without phenotypes in single-step genomic evaluations

T. Shabalina,¹ E. C. G. Pimentel,^{1,2} C. Edel, L. Plieschke, R. Emmerling, and K.-U. Götz Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586 Grub, Germany

see also contribution to poster-session, EAAP 2017

Simulation study:

- exploring effects of implicit imputation in single-step genomic BLUP
- genotypes without phenotypes improve the predictive ability of the system by imputing phenotyped animals without genotypes
- however, the quality of imputed genotypes varies

J. Dairy Sci. 100:1–5 https://doi.org/10.3168/jds.2017-12734

© 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Short communication: The role of genotypes from animals without phenotypes in single-step genomic evaluations

T. Shabalina,¹ **E. C. G. Pimentel**,^{1,2} **C. Edel, L. Plieschke, R. Emmerling, and K.-U. Götz** Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586 Grub, Germany

see also contribution to poster-session, EAAP 2017

Table 2. Number of genotyped sons per sire from generation 3 to 4, calculated and expected correlation between imputed and true genotypes for different scenarios

Item	Scenario 1	Scenario 2	Scenario 3
Number of sons per sire Calculated correlation (SD) Expected correlation	2.41 0.77 (0.06)	$\begin{array}{c} 3.10 \\ 0.82 \\ 0.71 \end{array} (0.06) \qquad \qquad$	$\begin{array}{c} 14.51 \\ 0.93 \ (0.06) \\ 0.91 \end{array}$

with increasing number of genotyped offspring the true genotype of an ancestor is imputed with higher accuracy

Definitions

- selective genotyping
 - animals are selected for genotyping based on a breeding value containing Mendelian Sampling (MS) information
- selective imputation
 - selective genotyping as introduced by imputation
 - genotypes of frequently used sires and dams are imputed with high accuracy (only)
- **reference** set
 - a group of animals contributing informative ties between phenotype and (observed or imputed) genotype

Hypothesis I

- selective genotyping in the reference set can have a negative impact on quality and unbiasedness of genomic predictions
- the effect should already be observable in standard two step genomic applications

Evidence from Empirical Data: Two step

Fleckvieh, routine application, forward prediction (4 y)

	b	91	Rel _{real}			
	MY	ΡΥ	MY	ΡΥ		
raw	.87	.89	63	63		

b₁: regression slope ITB GEBV-Test (Mäntysaari et. al, 2010)
 Rel_{real}: realized reliability (VanRaden et al., 2009)

Evidence from Empirical Data: Two step

Fleckvieh, routine application, forward prediction (4 y)

- to compensate for negative effects of selective genotyping in reference population
- uses systematic difference between PA and EBV (reference animals) as indicator/measure of (pre-)selection on MS

Background: selected reference population

Animal Breeding

- pre-genomic: ~600 bulls per year tested
- ≥1998: approx. completely genotyped
- <1998: selective genotyping (~second service sires only)</p>

Background: selected reference population

Evidence from Empirical Data: Two step

Fleckvieh, routine application, forward prediction (4 y)

	b	1	Rel _{real}			
	MY	ΡΥ	PY MY			
raw	.87	.89	63	63		
scaled	.93	.96	63	63		
pruned	.92	.94	62	61		

b₁: regression slope ITB GEBV-Test (Mäntysaari et. al, 2010)
 Rel_{real}: realized reliability (VanRaden et al., 2009)

Conclusion I

- selectively genotyped sires from older birth years inflate genomic predictions if they are included in the reference
- omitting these sires reduces inflation and has only a small impact on reliability
- similar effects can be observed with scaling, depending on the measure of selectedness of reference

Hypothesis II

in Single-Step Genomic BLUP selective genotyping of reference animals should have a similar impact as in Two-Step GBLUP

selective genotyping can occur in two ways

- ✓ directly or
- ✓ as a consequence of selective imputation

as a consequence pruning of genotypes should have a different effect from pruning of data (phenotypes)

Evidence from Empirical Data: Single Step

Background: Effects of pruning

genotypes per birthyears

Evidence from Empirical Data: Single Step

Background: Effects of pruning

- pruning of genotypes only
 - selective imputation reestablishes the effects of selective genotyping

Background: Effects of pruning

genotypes per birthyears

Animal Breeding

1980 1981		pruning of genotypes only	
1982 1983 1984 1985 1986 1987 1988 1989		 selective imputation reestablishes the selective genotyping 	he
1990 1991 1992 1993 1994 1995		pruning of data	
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008		 reduces the negative impact of selective imputation and improves quality of GEBV 	
2009 2010 2011 2012 2013 2014 2015 2016		post-genomic	
	0 500 LfL	1000 1500 >2000	19

Evidence from Empirical Data: Single Step

Fleckvieh, test application, forward prediction (4 y)

	t	9 ₁	Rel _{real}			
	MY	ΡΥ	MY	ΡΥ		
raw	.81	.80	64	61		
pruned: P	.91	.89	65	61		

b1: regression slope ITB GEBV-Test (Mäntysaari et. al, 2010)
 Relreal: realized reliability (VanRaden et al., 2009)

Evidence from Empirical Data: Single Step

Fleckvieh, test application, forward prediction (4 y)

	b	1	Rel _{real}			
	MY	ΡΥ	MY	ΡΥ		
raw	.81	.80	64	61		
pruned: P	.91	.89	65	61		
pruned: G	.82	.80	64	61		

b₁: regression slope ITB GEBV-Test (Mäntysaari et. al, 2010)
 Rel_{real}: realized reliability (VanRaden et al., 2009)

Conclusion II

- Single-Step
 - shows similar effects of selective genotyping
 - estimates are generally more inflated than in two step
- removing older animals (P+G) from selectively genotyped birth years reduces inflation considerably
- removal of genotypes only is <u>not</u> sufficient
 - information restored from 'historical' A₁₁ block is selective
 - reestablishes negative effects of selective genotyping on genomic estimates

General Conclusion

- selective genotyping
 - often neglected as a potential source of inflation
 - still an aspect to consider
 - elite cows (genotyped or selectively imputed)
 - (unintentional) preselection for cow reference population
- Single Step genomic prediction
 - implicitly restores information of pruned genotypes by imputation
 - therefore, pruning of genotypes is not sufficient
 - data-pruning (P+G) appears to be the only way to control negative effects

Thank you for your attention

We gratefully acknowledge:

- Arbeitsgemeinschaft Süddeutscher Rinderzucht- und Besamungsorganisationen for financial support within the research cooperation "Zukunftswege"
- Contributors of the genotype pool Germany-Austria

Evidence from Empirical Data: Single Step

Fleckvieh, test application, forward prediction (4 y)

additional results

	b	1	Re	I _{real}	
	MY	ΡΥ	MY	ΡΥ	
raw	.81	.80	64	61	
pruned: P	.91	.89	65	61	
pruned: G	.82 .82		64	61	
expected	.91	.93			
pruned: P plus	s .92	.92	66	62	
two-step (plus cow gt)	.93	.95	65	63	

b1: regression slope ITB GEBV-Test (Mäntysaari et. al, 2010)
 Relreal: realized reliability (VanRaden et al., 2009)

Evidence from Simulation

strong effects of phenotypic preselection: cow reference

Systematic genotyping of groups of cows to improve genomic estimated breeding values of selection candidates

Laura Plieschke^{1*}, Christian Edel¹, Eduardo C. G. Pimentel¹, Reiner Emmerling¹, Jörn Bennewitz² and Kay-Uwe Götz¹

Table 5 Model-derived reliabilities (R² were virtually equal across all scenarios), validation reliability (ρ^2) and regression slopes of the –/50 scenario and the three additional scenarios

Scenarios		-/50	-/50 -/50 _s		5	-/25 _r 2					
Validation set	Sire status	Number of individuals	R ²	ρ^2	b	ρ^2	b		b	ρ^2	b
9	Reference	1050	81	53	0.82	35	0.60	40			
10a	Reference	4516	81	65	0.95	42	0.76				
10b	Not reference	10,484	76	60	0.92	37	0.70				
Validation animals v	vere divided according	g to whether their sire was in the r	eference	set or not		5	1				

^a Higher standard error compared to the other scenarios

