

Genomic selection of latent variables related to the milk fatty acid profile, milk composition, and udder health in dairy cattle

N.P.P. Macciotta¹, A. Cesarani¹, S. Pegolo², M. Mele³, G. Bittante², A. Cecchinato²

¹Dipartimento di Agraria, Università degli Studi di Sassari

²Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università degli Studi di Padova

³Dipartimento di Scienze Agrarie, Alimentari, Agro-ambientali, Università degli Studi di Pisa

- ✓ Fine quality of products, production efficiency and sustainablity
- ✓ Often difficult to measure routinely
- ✓ Big data
- ✓ Difficult to interpret

- Key point for improving nutritional and dietary properties of milk
- ✓ Genetic basis
- ✓ Routine determination by MIR spectra
- ✓ Large number of variables
- ✓ Complex correlation pattern

The (co)variance matrix of a system could be decomposed

$\mathbf{S} = \mathbf{B}\mathbf{B'} + \Psi$

- S = (Co)variance matrix of original data
- B = (Co)variance between original data and latent factors
- Ψ = Specific variance matrix

- ✓ Relevant reduction of the dimension of the system (<77%)
- ✓ Twelve new variables with biological meaning explaining about 75% of the variance (Mele et al., 2016)
- ✓ Grouping of original variables with similar metabolic origin and meaning
 - ✓ Low to moderate values of heritability

Genetic parameters (Cecchinato et al., 2019)

Item	h ² _{AH}
F1: De novo FA	0.14 (0.05)
F2: MY - Branched FA	0.21 (0.04)
F3: Biohydrogenation	0.19 (0.03)
F4: Long chain FA	0.05 (0.01)
F5: Desaturation	0.31 (0.07)
F6: Short chain FA	0.16 (0.03)
F7: Milk fat protein	0.27 _(0.06)
F8: Odd FA	0.13 (0.04)
F9: CLA	0.06 (0.01)
F10: Linolenic	0.20 (0.04)
F11: Udder health	0.14 (0.06)
F12: C18:2 <i>t</i> 11 <i>c</i> 15	0.05 (0.02)

- FA could be used as a reduced set of variables for improving milk nutritional quality
- They stress the attention on metablic pathways
- ✓ GS could be an interesting option for implementing a breeding programme

Aim of the work

- Evaluation of GEBV accuracy for Factor scores
- ✓ Comparison between two different models GBLUP and Single-step GBLUP

Data

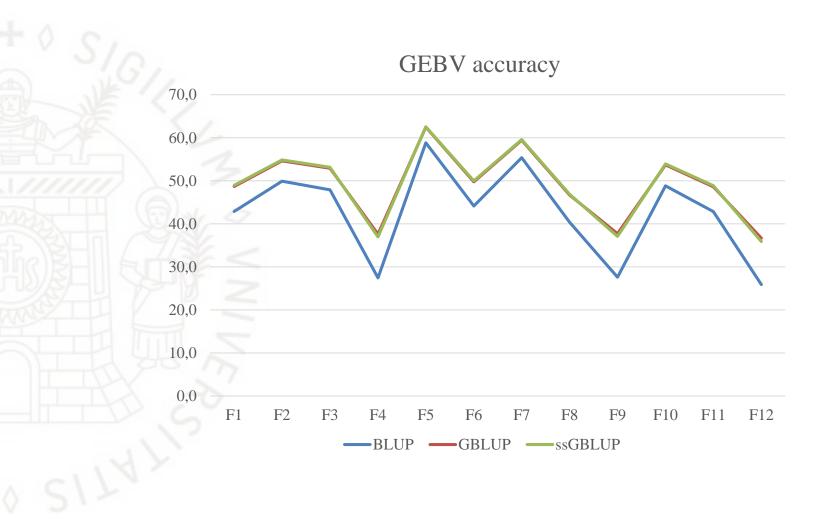
- Fatty acid composition (GC), milk composition of 1,099 Italian Brown cattle
- ✓ 965 were genotyped with the 50K Illumina beadchip , 918 gen+phen
- ✓ 12 latent factor (FAF) scores

✓Animal model that included the fixed effects of herd, lactation stage, parity, and the random additive genetic effect

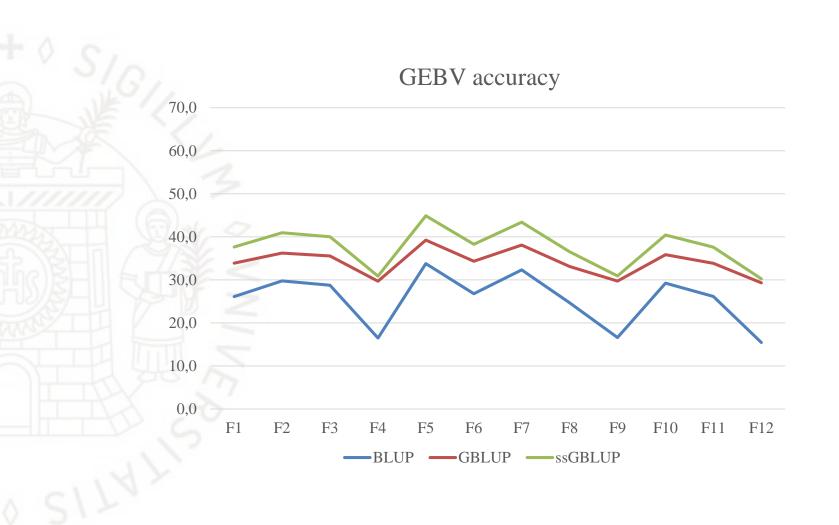
Breeding value prediction

✓ Pedigree based BLUP (A_BLUP)

✓ GBLUP


✓ Single Step GBLUP (SS_GBLUP)

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$


- ✓ 200 youngest animals with masked phenotype
- ✓ GEBV accuracy calculated from the LHS of MME
- ✓ Variance components by Cecchinato et al. 2019

Results: training

Results: Validation

Overall GEBV accuracy

Training Prediction	A_BLUP 0.43 \pm 0.11 0.26 \pm 0.06		ssG_BLUP 0.49 ± 0.09
C			0.49 ± 0.09
Prediction	0.26 ± 0.06		
		0.34 ± 0.03	0.38 ± 0.05

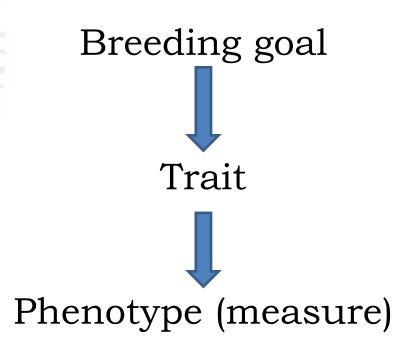
Results

GEBV accuracy: training

GEBV accuracy: training					
Factor	A_BLUP	G_BLUP	ssG_BLUP		
De novo	$\textbf{0.43} \pm \textbf{0.04}$	$\boldsymbol{0.49 \pm 0.07}$	$\textbf{0.49} \pm \textbf{0.05}$		
MY - Branched FA	$\boldsymbol{0.50 \pm 0.04}$	$\boldsymbol{0.55 \pm 0.06}$	$\textbf{0.55} \pm \textbf{0.04}$		
Biohydrogenation	$\textbf{0.48} \pm \textbf{0.04}$	$\boldsymbol{0.53\pm0.06}$	$\textbf{0.53} \pm \textbf{0.05}$		
Long chain FA	$\textbf{0.28} \pm \textbf{0.05}$	$\boldsymbol{0.38 \pm 0.09}$	$\boldsymbol{0.37 \pm 0.06}$		
Desaturation	$\boldsymbol{0.59 \pm 0.03}$	0.62 ± 0.05	0.62 ± 0.03		
Short chain FA	$\textbf{0.44} \pm \textbf{0.04}$	$\boldsymbol{0.50 \pm 0.07}$	$\boldsymbol{0.50 \pm 0.05}$		

Results

GEBV accuracy: validation


GEBV accuracy: validation				
Factor	A_BLUP	G_BLUP	ssG_BLUP	
De novo	$\boldsymbol{0.26 \pm 0.10}$	0.34 ± 0.16	$\textbf{0.38} \pm \textbf{0.09}$	
MY - Branched FA	$\boldsymbol{0.30 \pm 0.10}$	$\textbf{0.36} \pm \textbf{0.17}$	0.41 ± 0.09	
Biohydrogenation	0.29 ± 0.10	0.36 ± 0.17	0.40 ± 0.09	
Long chain FA	$\boldsymbol{0.17 \pm 0.08}$	0.30 ± 0.15	0.31 ± 0.09	
Desaturation	$\textbf{0.34} \pm \textbf{0.10}$	$\boldsymbol{0.39 \pm 0.18}$	$\textbf{0.45} \pm \textbf{0.10}$	
Short chain FA	$\boldsymbol{0.27 \pm 0.10}$	0.34 ± 0.17	0.38 ± 0.09	

- ✓ Accuracies small to moderate
- ✓ Sample size and structure
- Accuracies from ssGBLUP slightly larger than GBLUP for the validation animals
- Genomic methods with equal performances on training individual
- ✓ Related to the genetic basis of the latent variables

✓ Factor scores could be proposed as an alternative phenotype for improving milk nutritional quality

Implications

- ✓ Small accuracies → increase sample size
- On large scale MIR predictions have to be used
- Genotyping strategies
- Phenotyping strategies