Genotype by environment interaction (G×E) for female fertility under conventional and organic production systems in Danish Holsteins

Aoxing Liu, Morten Kargo, Johanna Höglund, Zhe Zhang, Jørn Rind Thomasen, Line Hjortø, Iben Alber Christiansen, Yachun Wang, Guosheng Su

Feb 10, 2018
Contents

• Introduction
• Material and methods
• Results and discussion
• Conclusion
Introduction
Introduction

- 13% milking cows are from organic herds (Lauridsen, U., 2018)
- Bulls used for organic are selected from data of all herds
Objectives

For female fertility traits in Danish Holsteins:

☑ Estimate variance components and heritabilities for conventional and organic production systems separately

☑ Investigate G×E under these two production systems
Material and methods
Workflow

- Environmental descriptor
- Grass ratio -> Energy balance -> fertility

Clean phenotype

Workflow:
1. Grass ratio of feed (2011/2016)
2. Typical Convention
3. Typical Organic
4. Full pedigree
5. 3 gen. DmuTrace

Environmental descriptor:
- Grass ratio
- Energy balance
- Fertility

Different from 1

GxE

h²

r_g
Data-Traits

- Same traits as Nordic routine evaluation
- Heifers (h) and cows (c) as different traits

<table>
<thead>
<tr>
<th>Heifer & Cow</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceive and keep pregnancy</td>
<td>Recycle after calving</td>
</tr>
<tr>
<td>AIS Number of inseminations</td>
<td>ICF Interval from calving to</td>
</tr>
<tr>
<td>IFL Interval from first to last</td>
<td>1st insemination</td>
</tr>
<tr>
<td>NRR Non-return rate at 56 days</td>
<td></td>
</tr>
<tr>
<td>after first insemination</td>
<td></td>
</tr>
</tbody>
</table>
Data- Grass ratio of feed

- Differences of grass ratio between seasons varied across herds
 - Herds with both seasons
 - Average over Summer and Winter

No. of herds with grass ratio of feed:
- Summer: 195
- Winter: 203

Grass ratio of feed

- Organic > Conventional
Data - Typical conventional/organic

Distribution of grass ratio of feed

- Conventional
 - Herds: 204 herds grass ratio < 0.2
 - Records: ~85,000 (heifer)
 - ~120,000 (cow)

- Organic
 - Herds: 130 herds grass ratio > 0.38
 - Records: ~35,000 (heifer)
 - 50,000 (cow)
Two-trait animal model

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} =
\begin{bmatrix}
 X_1 & 0 \\
 0 & X_2
\end{bmatrix}
\begin{bmatrix}
 \beta_1 \\
 \beta_2
\end{bmatrix} +
\begin{bmatrix}
 Z_1 & 0 \\
 0 & Z_2
\end{bmatrix}
\begin{bmatrix}
 \alpha_1 \\
 \alpha_2
\end{bmatrix} +
\begin{bmatrix}
 e_1 \\
 e_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \alpha_1 \\
 \alpha_2
\end{bmatrix} \sim N\left(0, A \otimes \begin{bmatrix}
 \sigma_{a_1}^2 & \sigma_{a_1 a_2} \\
 \sigma_{a_1 a_2} & \sigma_{a_2}^2
\end{bmatrix}\right)
\]

\[
\begin{bmatrix}
 e_1 \\
 e_2
\end{bmatrix} \sim N\left(0, I \otimes \begin{bmatrix}
 \sigma_{e_1}^2 & 0 \\
 0 & \sigma_{e_2}^2
\end{bmatrix}\right)
\]
Two-trait animal model

Repeatability model (lactation 1-3)

\[
[y_1] = [X_1 \ 0 \ 0 \ X_2][\beta_1 \ \beta_2] + [Z_{a1} \ 0 \ Z_{a2}][a_1 \ a_2] + [Z_{pe1} \ 0 \ Z_{pe2}][pe_1 \ pe_2] + [e_1 \ e_2]
\]

\[
[a_1 \ a_2] \sim N \left(0, A \otimes \begin{bmatrix} \sigma_{a1}^2 & \sigma_{a1a2} \\ \sigma_{a1a2} & \sigma_{a2}^2 \end{bmatrix} \right)
\]

\[
[pe_1 \ pe_2] \sim N \left(0, I \otimes \begin{bmatrix} \sigma_{pe1}^2 & 0 \\ 0 & \sigma_{pe2}^2 \end{bmatrix} \right)
\]

\[
[e_1 \ e_2] \sim N \left(0, I \otimes \begin{bmatrix} \sigma_{e1}^2 & 0 \\ 0 & \sigma_{e2}^2 \end{bmatrix} \right)
\]
Results and discussion
Results—Mean of phenotypes

- NRR (%)
 - Heifer: 60
 - Cow: 2.5

- AIS (#)
 - Heifer: 70
 - Cow: 75

- IFL (day)
 - Heifer: 60
 - Cow: 60

- ICF (day)
 - Cow: Organic better than Conventional

- NRRh: organic is ~5 percentage point higher than conventional

- Organic better than Conventional
Heritabilities were low in both organic and conventional.

Heterogeneity in heritabilities between organic and conventional, indicating genetic evaluation based on data of all herds requires a model able to handle the heterogeneity.
Significant G×E were observed for NRRh, AISH and for ICF.

G×E for three traits and increasing organic population suggested it may have a potential to develop a breeding program optimal for both production systems.
Conclusion
Conclusion

- Fertility functions: **organic better than conventional**
- Heterogeneity in heritabilities
- Significant \(G \times E \) were observed for AISh, NRRh and for ICF
- The existence of \(G \times E \) for three traits and the increasing organic population suggested that it maybe have a **potential to develop a breeding program optimal for both production systems**
Acknowledgement

• Per Madsen, Aarhus University
• Lu Cao, Aarhus University
• Xiaowei Mao, Cornell University
• Han Mulder, Wageningen University & Research
Organic dairy breeding lines? – Possibilities and requirements
Morten Kargo, Aarhus University
Time: Feb 13 (TUE), 14:30-14:45

Breeding goals for organic dairy farming in Denmark based on the principles of organic agriculture
Presenter: Margot Slagboom, Aarhus University
Time: Feb 15 (THU), 10:00-10:15
Definition of $G \times E$

\[P = G + E + G \times E \]

Different G response differently to different E

Is there a $G \times E$?

Data Grass ratio in feed

- Organic: grass ratio (summer-winter)
- Conventional: grass ratio (summer-winter)