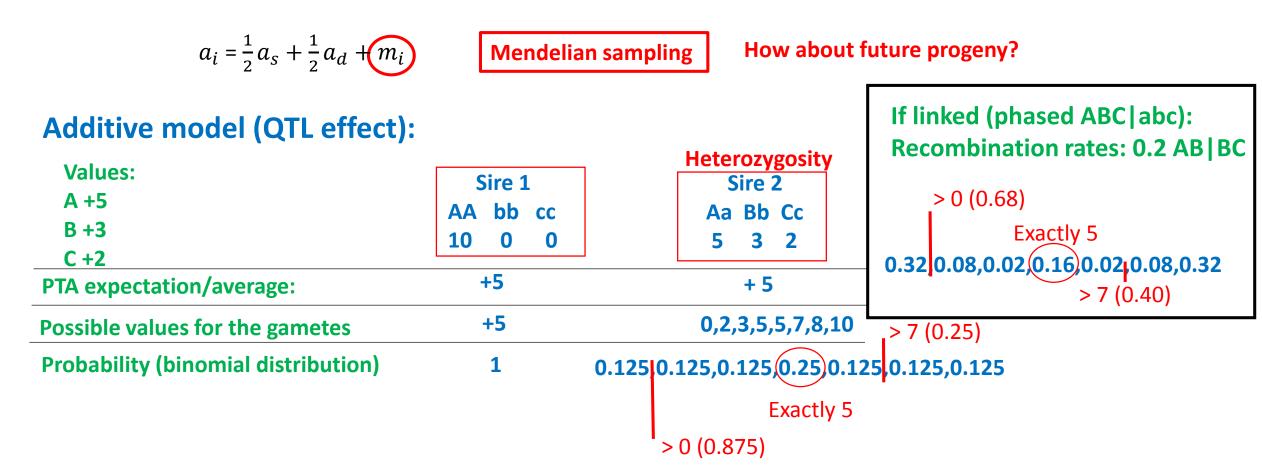
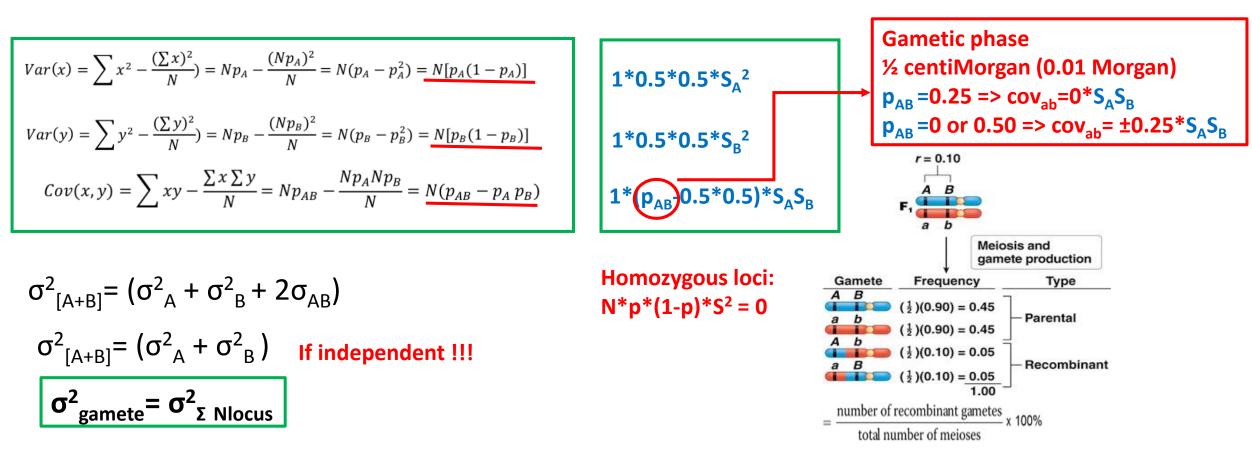
World Congress on Genetics Applied to Livestock Production, 11. 176

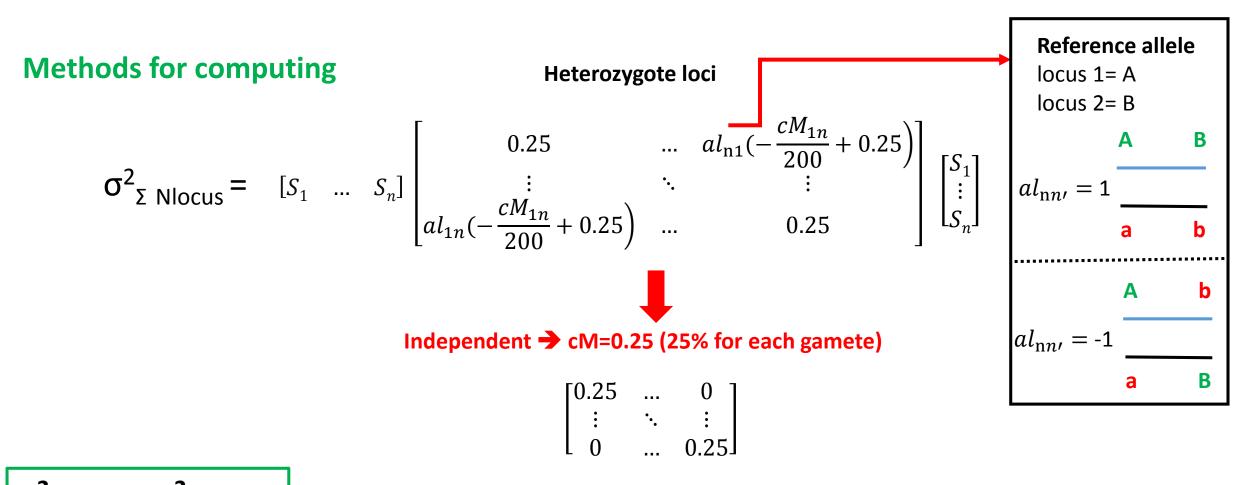
Obtaining variance of gametic diversity with genomic models

D.J.A. Santos^{1,4}, J.B. Cole², P.M. VanRaden², T.J. Lawlor³, H. Tonhati¹ & L. Ma⁴



Central Idea


Breeding value inheritance components:


Statistics Background

Binomial Variances and Covariances

Solutions

Method

> 50 cM is considered as independent (that is 50 cM)

gamete

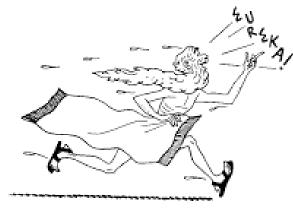
Σ Nlocus

Application

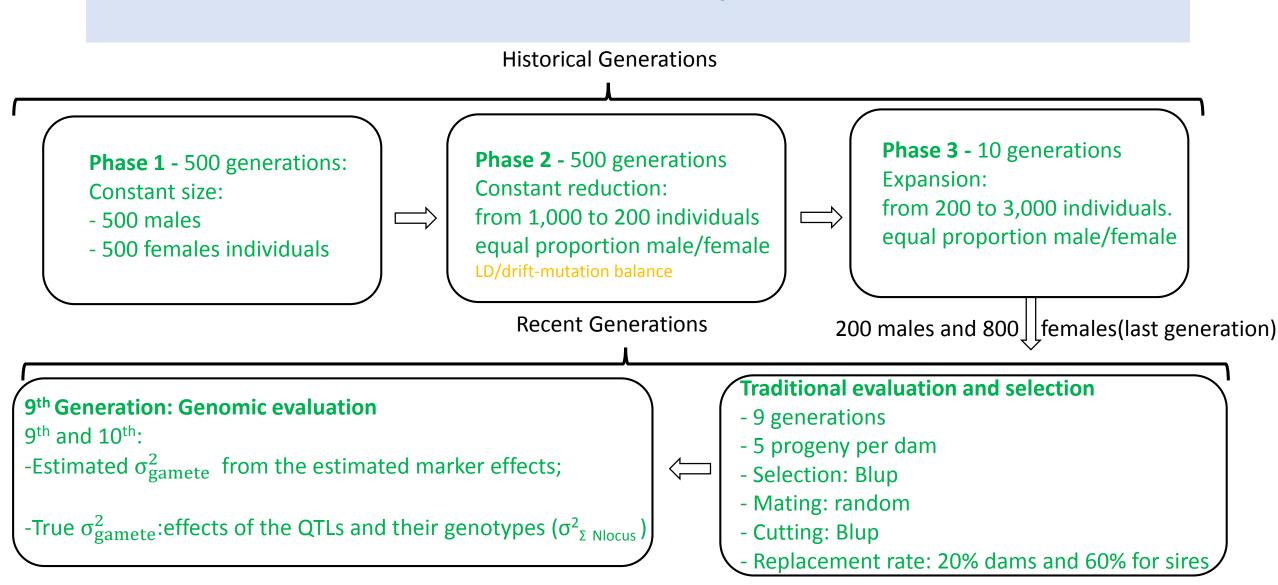
Confidence intervals $\mathbf{RPTA}_{i} = \mathbf{PTA}_{i} + \sigma_{\text{gametic}_{i}} * \mathbf{i}_{f}$ **Strategies of selection** $\left|\sigma^{2}a + 4i_{f}^{2}var(\sigma_{\text{gametic}_{i}}^{2}) - \sqrt{\sigma^{2}a}\right|$ **Genetic Gain in Future** $\Delta G_{\perp} \Delta G R$ D S RS S $\Delta G = r * i * \sigma_a$ $\Delta GR = r * i * \sigma_a^2 + 4 * \operatorname{var}(\sigma_{gametic_i}^2) * i_f^2$

Important Questions

In practice, how can we obtain the variance of gametic diversity? Using marker effects estimated from routine genomic evaluation!!!


Subsequent questions about this approach:

1- Should the recombination rate also be considered (dependence) between the markers?


- 2 What should the density panel marker be?
 - 3 Which models to use?
 - 4 What is the MAF effect?

To answer these questions, simulation study was proposed !!!

Simulation - Population

Simulation – Genome and Traits

Others Genome Parameters

Mutation Rater QTL Mutation Rater Marker Marker positions in genome QTL position in genome QTL allele effect 2.5x10⁻⁵
2.5x10⁻³
Evenly spaced
Random (uniform distribution)
Gamma distribution (β=0.4)

Scenarios: 4 traits (QTLs x h²) x 2 SNPs panels

Traits:

1

N° of QTL: 20 (0.1 QTL/cM) (low density) 200 (1 QTL/cM) (Meuwissen et al., 2001) h²:

0.1 and 0.3

 $\sigma^{2}_{phenotypic} = 1$ 4 replicates for each trait

2

3

4

Markers and Panels:

200,000 markers were simulated and randomly distributed

HD => 10% of the polymorphic markers sampled each 0.5 cM

SEQ => 20% of the markers also sampled every 0.5 cM and all QTLs

All simulations were performed QMSim version 1.10 (Sargolzaei & Schenkel, 2009)

Х

Genomic Model

Depends on the effects of the markers:

- 1 Traditional (SNP-BLUP/GBLUP)
 - $a \sim N(0,\sigma^2)/u \sim N(0,G\sigma_a^2)$

2 - Differential shrinkage (Improved LASSO)

 $\Pr(a_i \mid \tau^2) = N(0, \tau_i^2)$ $\Pr(\tau_i^2 \mid \lambda) = \lambda^2 \exp(-\lambda^2 \mid \tau_i^2 \mid)$

The analyses were performed using GS3 v.3 software (Legarra et al., 2015)

Variance components:

initial values = true valuesinteractions: 20,000burn-in: 2,000.

Gametic Variance

$$1 - \sigma_{g}^{2} = All \ QTL$$

$$2 - \sigma_{g_{maf}}^{2} = QTL \ with \ MAF \ge 0.05 \ \left[\begin{array}{cccc} 0.25 & \dots & al_{n1}(-\frac{cM_{1n}}{200} + 0.25) \\ \vdots & \ddots & \vdots \\ al_{1n}(-\frac{cM_{1n}}{200} + 0.25) & \dots & 0.25 \end{array} \right]$$

$$3 - \sigma_{dia}^{2} = All \ QTL$$

$$4 - \sigma_{dia_{maf}}^{2} = QTL \ with \ MAF \ge 0.05 \ \left[\begin{array}{cccc} 0.25 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0.25 \end{array} \right]$$

Results

Correlation of True Values

Scenario			Q	TLs da		
h^2	QTL		$\sigma^2_{g_maf}$	σ_{dia}^2	$\sigma^2_{dia_{maf}}$	No alterna and trade
0 1	20		0.75	0.96	0.69	Medium magnitude
0.1	200	σ_{g}^{2}	0.96	0.50	0.48	
0.2	20		0.94	0.95	0.90	
0.3	200		0.95	0.55	0.52	
			High m	nagnitude		

It implies that QTLs with low MAF are important for obtaining accurate estimates of σ^2_{gamete}

 σ_{gamete}^2 does not depend directly on population allele frequencies but on the individual's heterozygous state (allele carrier).

Correlation between True and Estimated σ_{gamete}^2

Similar accuracy!

Scenario High-sensity panel					Sequencing data				
h^2	QTL	σ^2_{gblup}	σ^2_{glasso}	$\sigma^2_{\rm dia_blup}$	$\sigma^2_{dia_lasso}$	$\sigma^2_{\mathrm gblup}$	σ^2_{glasso}	$\sigma^2_{dia_blup}$	$\sigma^2_{dia_lasso}$
0 1	20	0.49	0.56	0.17	0.39	0.46	0.57	0.20	0.40
0.1	200	0.50	0.60	0.29	0.37	0.46	0.61	0.29	0.40
0.2	20	0.64	0.83	0.28	0.66	0.59	0.83	0.07	0.65
0.3	200	0.63	0.77	0.25	0.49	0.59	0.77	0.29	0.48
	Best accurac <mark>y/</mark> Vorst accuracy!								

Bias

Trait		Madal		HD		SEQ			
h^2	QTLs	Model -	MSE	а	b	MSE	а	b	
	20	GBLUP	0.0014	-0.0010	0.27	0.0022	-0.00033	0.20	
0.1	20	LASSO	8e-05	0.0027	1.20	8e-05	0.00185	1.26	
0.1	200	GBLUP	0.0010	0.0058	0.23	0.0016	0.00637	0.18	
		LASSO	0.0001	0.0074	1.01	0.0001	0.00681	1.03	
	20	GBLUP	0.0017	-0.00697	0.43	0.0028	-0.00625	0.35	
0.2	20	LASSO	0.0002	0.00282	1.46	0.0002	0.00247	1.41	
0.3	200	GBLUP	0.0021	0.00979	0.40	0.0035	0.01123	0.33	
		LASSO	0.0004	0.00945	1.14	0.0004	0.00950	1.13	

Mean squared prediction (MSE): \downarrow values

GBLUP - higher predicted bias (overestimation)

Coefficient of the linear regression (b): close to one

HD X SEQ - Similar Bias

Conclusions

- 1 The σ_{gamete}^2 can be obtained by GM using HD panels without the need to use sequencing data.
- 2 Differential shrinkage models are preferred;
- 3 Markers with low MAF should be also used;
- 4 The covariance (dependence) among markers should be considered.

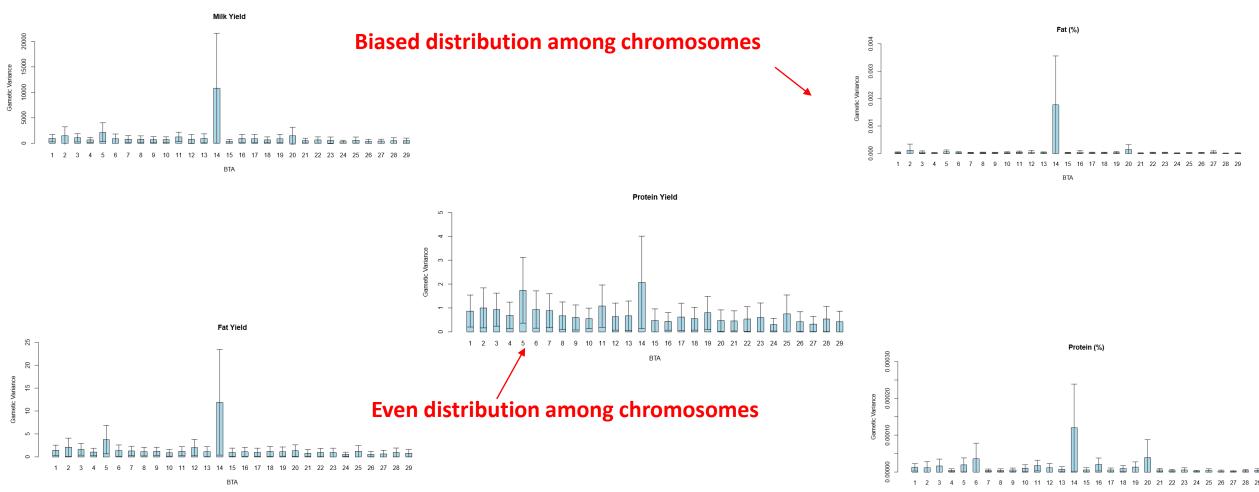
For improving the accuracy of the estimations

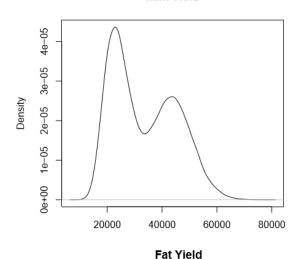
Acknowledgement

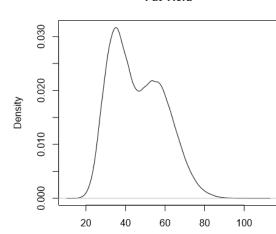
Financial Support

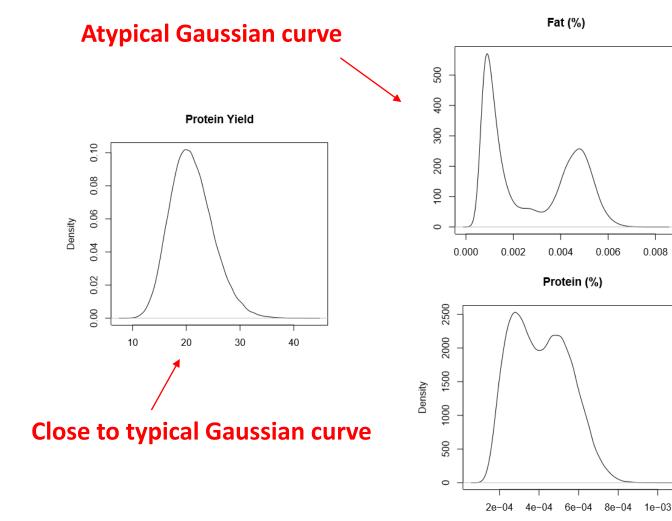
- **BARD Research Project US-4997-17**
- USDA-NIFA Foundational Grant 2016-67015-24886
- **FAPESP 2017/00462-5**

Thank you!!!






Real Data: USDA/Jersey



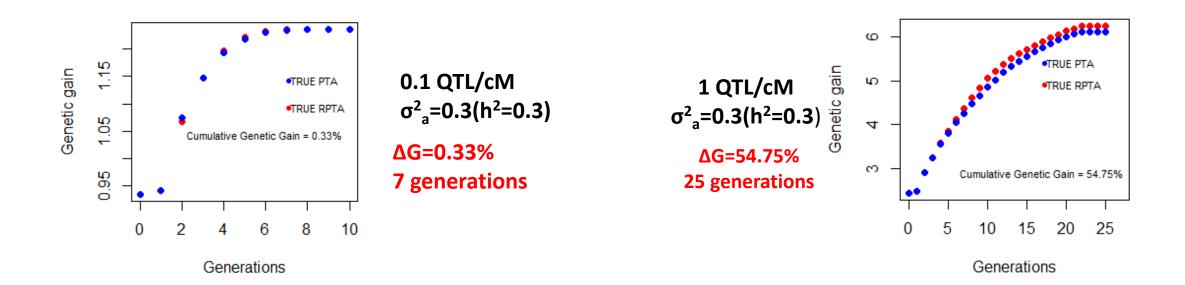
Distribution of σ_{gamete}^2 for Production Traits

Milk Yield

0.008

Applied example: USDA/Jersey

Correlation (r) between σ_{gamete}^2 and variance of progeny GEBV for different traits per minimum number of offspring per sire.


Minimum nº of offspring	Nº Sires	r _{Milk} Yield	r _{Fat Yield}	r _{Protein Yield}	$r_{Fat\%}$	r _{Protein %}
10	1109	0,24	0,20	0,16	0,58	0,30
50	451	0,40	0,46	0,33	0,75	0,50
100	311	0,53	0,47	0,34	0,85	0,60
200	183	0,64	0,49	0,31	0,95	0,77
300	128	0,68	0,55	0,40	0,96	0,86
400	97	0,66	0,61	0,43	0,97	0,90
500	77	0,66	0,62	0,51	0,97	0,90
600	66	0,69	0,66	0,54	0,97	0,92
				Î		
			Lowest Protein Yield			Greatest Fat %

Incresing

Motivating Results – TRUE RPTA / PTA

Simulation: Future generations; sires (i=1.75) and Dam (i=0.97).

TRUE RPTAs were corrected for number of offspring;

Applied example: USDA/Jersey

Genetic summary for Top 10 Sires for Milk Yield.

Sire_ID	Year	σ^2_{gamete}	CRV	Ν	PTA	rankPTA	RPTA_1.5	rankRPTA	Pr>1,100		
59250449	2010	27,905	0.50	96	1,057	1	1.308	1	0.40		
62902902	2012	23,724	0.47	83	1,027	2	1.259	4	0.32		
56893061	2009	23,526	0.47	85	1,021	3	1.251	5	0.30		
63345061	2012	30,756	0.53	107	1,004	4	1.267	3	0.29		
54319065	2008	29,600	0.52	103	983	5	1.241	6	0.24		
63561482	2012	39,800	0.65	164	973	6	1.272	2	0.26		
68432385	2014	25,722	0.50	95	963	7	1.204	8	0,20		
66011155	2013	26,721	0.50	97	958	8	1.203	9	0,19		
65096622	2013	20,532	0.45	78	928	9	1.142	25	0,11		
66009958	2013	26,503	0.49	93	927	10	1.171	14	0,14		
CKV =	$CRV = \frac{\sigma_{gamete}}{0.5\sqrt{E[u^2]}}; N = \frac{(1.96)^2 * (CRV)^2}{(0.1)^2}; RPTA_{1.5} = PTA + \sigma_{gamete} * 1.5$										