Improving cow reproductive performance using genetic estimates of daughter fertility
Daughter Fertility Australian Breeding Value (ABV)

<table>
<thead>
<tr>
<th>Code</th>
<th>A2 Status</th>
<th>NASIS ID</th>
<th>Pedigree</th>
<th>BP</th>
<th>BPI Rel%</th>
<th>HWI</th>
<th>HWI Rel%</th>
<th>TWI</th>
<th>TWI Rel%</th>
<th>ASI</th>
<th>Protein (Kg)</th>
<th>Fat (Kg)</th>
<th>Fat %</th>
<th>Rel %</th>
<th>Daughters</th>
<th>Herds</th>
<th>RIP %</th>
<th>Milking Speed</th>
<th>Temperament</th>
<th>Likeability</th>
<th>Overall Type</th>
<th>Mann System</th>
<th>Rel %</th>
<th>Cell Count / Rel %</th>
<th>Dir Fertility / Rel %</th>
<th>Calving Ease / Rel %</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRANGLER</td>
<td>12FFH13</td>
<td>Man-O-Man x Shottle</td>
<td>304 69 213 64 285 69</td>
<td>235</td>
<td>30 0.32</td>
<td>481 43 0.32</td>
<td>76</td>
<td>45 24 17</td>
<td>100 102 102 67</td>
<td>106 104 75</td>
<td>123/68</td>
<td>105/67</td>
<td>102/62</td>
<td></td>
</tr>
<tr>
<td>CHRISTMAS</td>
<td>A22</td>
<td>12FFE7</td>
<td>Roumare x Goldbullion</td>
<td>271 79 159 73 282 79</td>
<td>276</td>
<td>32 0.34</td>
<td>530 59 0.52</td>
<td>77</td>
<td>47 22 21</td>
<td>102 101 101 74</td>
<td>108 101 81</td>
<td>112/62</td>
<td>100/76</td>
<td>100/85</td>
<td></td>
</tr>
<tr>
<td>GEEMCEE</td>
<td>12FFH12</td>
<td>Man-O-Man x Shottle</td>
<td>336 69 227 64 281 70</td>
<td>191</td>
<td>18 0.45</td>
<td>-230 25 0.51</td>
<td>86</td>
<td>51 29 25</td>
<td>105 102 101 72</td>
<td>105 101 79</td>
<td>146/67</td>
<td>106/62</td>
<td>103/78</td>
<td></td>
</tr>
<tr>
<td>TRICKIN</td>
<td>A22</td>
<td>12FFG31</td>
<td>Man-O-Man x Roumare</td>
<td>282 76 206 70 269 76</td>
<td>184</td>
<td>24 0.20</td>
<td>524 37 0.21</td>
<td>84</td>
<td>74 31 35</td>
<td>102 99 100 75</td>
<td>104 105 79</td>
<td>125/61</td>
<td>108/65</td>
<td>103/78</td>
<td></td>
</tr>
<tr>
<td>NADAL</td>
<td>12FFH34</td>
<td>Man-O-Man x Roumare</td>
<td>212 74 139 69 182 75</td>
<td>104</td>
<td>18 0.16</td>
<td>360 9 -0.09</td>
<td>99</td>
<td>6395 660 26</td>
<td>102 103 103 99</td>
<td>108 113 99</td>
<td>134/74</td>
<td>104/72</td>
<td>103/71</td>
<td></td>
</tr>
<tr>
<td>MEDALLION</td>
<td>A22</td>
<td>12FFB04</td>
<td>Informer x Knockout</td>
<td>174 93 144 87 218 93</td>
<td>104</td>
<td>18 0.16</td>
<td>360 9 -0.09</td>
<td>99</td>
<td>6395 660 26</td>
<td>102 103 103 99</td>
<td>108 113 99</td>
<td>134/74</td>
<td>104/72</td>
<td>103/71</td>
<td></td>
</tr>
<tr>
<td>GOLDCREST</td>
<td>12FFE85</td>
<td>Goldwyn x Donor</td>
<td>303 75 247 68 286 74</td>
<td>219</td>
<td>33 0.15</td>
<td>925 46 0.10</td>
<td>85</td>
<td>68 32 25</td>
<td>102 103 102 67</td>
<td>101 103 71</td>
<td>138/77</td>
<td>98/72</td>
<td>100/84</td>
<td></td>
</tr>
<tr>
<td>FLASHBACK</td>
<td>12FFE64</td>
<td>Shottle x Goldwyn</td>
<td>216 74 180 68 221 74</td>
<td>116</td>
<td>30 -0.08</td>
<td>1260 19 -0.50</td>
<td>84</td>
<td>63 31 15</td>
<td>102 103 104 69</td>
<td>106 103 77</td>
<td>153/74</td>
<td>104/70</td>
<td>101/86</td>
<td></td>
</tr>
<tr>
<td>JIMEO</td>
<td>12FFG16</td>
<td>Legend x Shottle</td>
<td>205 70 156 65 206 70</td>
<td>104</td>
<td>15 0.07</td>
<td>436 23 0.07</td>
<td>79</td>
<td>56 22 37</td>
<td>102 101 102 71</td>
<td>106 103 70</td>
<td>162/72</td>
<td>104/64</td>
<td>103/84</td>
<td></td>
</tr>
<tr>
<td>PICOLA</td>
<td>A22</td>
<td>12FFJ01</td>
<td>Delsanto x Planet</td>
<td>290 68 224 61 266 66</td>
<td>224</td>
<td>26 0.18</td>
<td>627 58 0.46</td>
<td>80</td>
<td>65 21 93</td>
<td>101 101 102 67</td>
<td>104 109 66</td>
<td>143/76</td>
<td>103/54</td>
<td>98/95</td>
<td></td>
</tr>
</tbody>
</table>
Objectives

• Part 1: ABV analysis
 – Explore the relationship between genetic estimate + phenotypic outcomes

• Part 2: Social research
 – Explore farmer attitudes, intentions and behaviours re: the selection of high daughter fertility ABV bulls
1. Materials and methods – ABV analysis

Retrospective cohort study

- **Herd**
 - 37 herds
 - Farm data

- **Cows**
 - 82,932 cows (1965 – 2017)
 - 31,083 Holstein-Friesian
 - 6327 Jersey

- **Lactations**
 - 214,406 calving records
 - 423,934 mating and preg test records
 - 902,015 herd test records
1. Materials and methods – ABV analysis

Daughter
Fertility ABV

- 3 week submission rate
- First service conception rate
- 6 week in-calf rate

genetic estimate, calculated from sire (0.5) + dam sire (0.25) daughter fertility ABV

Phenotypic measures of reproductive performance for each cow per mating period
- Survival analysis
- Regression model
2. Materials and methods – social research

- Elicitation study + questionnaire
3. Results – ABV analysis

• 3 week submission rate
<table>
<thead>
<tr>
<th>Summary of data collected so far</th>
</tr>
</thead>
</table>
| **Salient beliefs** | Have improved overall herd fertility.
Gain better culling flexibility.
Gain more heifer replacements.
Gain better cow longevity.
Have better profitability and/or lower costs.
Have less reproductive wastage and better AI efficiency.
Have less frustration and/or headaches about particular cows not getting in calf.
Feel like I'm improving my herd and breeding towards a better animal.
Have restrictions on my bull choices.
Have compromised progress in non-fertility traits such as type or production. |
| ‘If I select high daughter fertility ABV sires, I will…’ |

| **Salient referents** | Other commercial dairy farmers.
Other stud breeding dairy farmers.
My herd improvement centre.
My local vet.
Breed societies.
My AI tech and/or breeding consultant.
Dairy Australia.
My semen seller/AI company.
People who buy (or will buy) my stock. |
| ‘Groups or people with an opinion about selecting high daughter fertility ABV sires include…’ |

| **Perceived barriers** | Lack of confidence in daughter fertility ABV data.
Lack of confidence in daughter fertility ABV reliability.
Too much information to sort through.
Price – high daughter fertility ABV sires are more expensive than other sires.
Difficulty looking up a bull’s daughter fertility ABV.
Lack of confidence that genetic selection for fertility will have a measurable impact on my herd. |
| ‘Things that make it hard for me to select high daughter fertility ABV sires include…’ |
Change in average Daughter Fertility ABVs in cows born over the last 43 years.
Acknowledgements

• Dairy Australia
• University of Melbourne
 – Associate professor Michael Pyman
 – Associate professor Peter Mansell
 – Dr David Beggs
 – Professor Mark Stevenson

• Rochester Veterinary Practice
 – Dr Alistair Murray
 – Dr Mitch Crawford

• Farmer participants