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Introduction

Challenges:

In comparison with dairy cattle, the adoption of genomic selection in sheep genetic evaluations

needs extra considerations due to:

• The diversity of breeds and composites resulting in small reference sizes within breed.

• High genotyping costs relative to economic returns.

Potential solutions:

• Increase the reference size through the use of multi-breed populations.

• Finding the causal mutations from imputed sequences and designing the inexpensive

customized low to medium density SNP chip.



Aim

Increase the accuracy of genomic prediction using sequence variants!

• Faster genetic gain and improving the profitability of sheep production.

• The application of genomic selection in the sheep industry looks promising.

How?

• Including the SNPs from imputed sequence affecting traits of interest “i.e. Top SNPs” in the

genomic prediction model.

– GBLUP (Moghaddar et al., previous talk)

– BayesR (Erbe et al., 2012) and BayesRC (MacLeod et al., 2016)



Material and methods (Animals and phenotypes)

• A mixture of breeds and crosses from Sheep CRC dataset and industry evaluations.

• Three Groups: GWAS QTL discovery / Genomic prediction reference / Genomic prediction validation.

• Growth and carcass traits (6 traits):

– Carcass fat depth at C site (CCFAT)

– Carcass and post-weaning eye muscle depth (CEMD and PEMD)

– Intermuscular fat percentage (IMF)

– Shear force measured at day 5 after slaughter (SF5)

– Post-weaning weight (PWT)

• Wool traits (3 traits):

– Yearling greasy and clean fleece weight (YGFW and YCFW)

– Yearling fibre diameter (YFD)
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Material and methods (Genotypes and GWAS)

• 50k panel (real or imputed)

• Genotypes on the X chromosome were excluded

• 50k (≈ 37k SNPs) genotypes were imputed to HD (≈ 500k SNPs) and then to WGS (≈ 31

million variants)

• GWAS:

– The “Top SNPs” were found in WGS imputed variants using Wombat software (Meyer, 2007)

– The most significant SNPs below p-value 0.001 within a 100 Kb window

– Prune one of any pair of SNPs with LD (r2) > 0.95

– ≈ 4,500 Top SNPs



Material and methods (Genomic prediction)

• The phenotypes were pre-adjusted for data source, and breed proportions.

• Genotypes were centred and standardised to a variance of 1.

• BayesR (Erbe et al., 2012):

– The SNP effects were modelled as a mixture of four normal distributions with a mean=0 and variance:
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• BayesRC (MacLeod et al., 2016):

– The top SNPs were allocated to a separate category or class than the remaining 50k SNPs.

• Each model was replicated with 5 MCMC chains, each with 40,000 iterations (20,000 burn-in).
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Results (Growth and carcass traits / Merino)

Accuracy (Cor Pheno,GEBV / sqrt(h2) ) Bias (b Pheno,GEBV)



Results (Growth and carcass traits / Border Leicester × Merino)

Accuracy (Cor Pheno,GEBV / sqrt(h2) ) Bias (b Pheno,GEBV)



Results (Wool traits / Merino) / Comparing GBLUP and BayesR(C)

Accuracy (Cor Pheno,GEBV / sqrt(h2) ) Bias (b Pheno,GEBV)



Conclusions • Bayesian models increased the accuracy of genomic prediction by

about 5% by adding the top sequence variants to 50k genotypes.

• GWAS top sequence variants account for only a proportion of the

expected genetic variance and an the average bias of predictions tend

to be higher than denser genotypes.

• The accuracy of predictions was highest in BayesRC when the top

SNPs were highly predictive (such as PWT).

• Adding top SNPs to low density SNP panels can increase the accuracy

of genomic prediction while minimising genotyping costs for industry

applications.
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Questions?



Results (Wool traits / Merino)

Accuracy (Cor Pheno,GEBV / sqrt(h2) ) Bias (b Pheno,GEBV)


