

Exploiting opportunities in dairy cattle breeding using mid-infrared spectral data associated to novel traits in the Walloon Region of Belgium

Nicolas Gengler

and colleagues from ULiège-GxABT, CRA-W and the whole Futurospectre Consortium: Soyeurt H., Bastin C., Bertozzi C., Colinet F.G., Froidmont E., Gillon A., Grelet C., Hammami H., Massart X., Mayeres P., Piraux E., Reis Mota R., Vanderick S., Vanlierde A., Vanrobays M.-L., Veselko D., Dehareng F.

The Beginning....

Very early in 2005....

 Research started in Gembloux (Walloon Region of Belgium) on mid-infrared (MIR) spectral data

MSc then PhD by Dr. Hélène Soyeurt

- MRO (DHI) and milk lab joining forces to collect MIR spectra during routine milk performance recording
- In a very short time....
 - From very few herds to all herds in the Walloon Region

Futurospectre Consortium

- Advantage of our limited size....
 - Very simple and coherent structure with few, already highly interconnected groups:
 - > Science and extension (CRA-W and ULiège-GxABT)
 - > DHI (Walloon Breeding Association AWE) and
 - > Milk lab (Milk Committee CdL)
- Therefore, already in 2008....
 - Founding of the Futurospectre R&D Consortium
 - Developed framework to collect, store, research and use the Walloon MIR data → DHI and later milk payment

© Ritter et al., 2015, Frontiers in Molecular Biosciences

Internationalization....

- ► Wallonia being small → internationalization
- Participation in different international projects, several successful European examples:
 - FP7 → RobustMilk, Greenhousemilk, GplusE
 - INTERREG NWE → OptiMIR (→ EMR)
 - New: INTERREG NWE → HappyMoo

🕹 Fill 🕚	- C	alibri (Boi	dy)	v 11	-	A- A-			abc	c - 00	p Ter	xt + Da	te		-		Norm	al	Bad		Good	Nes	atral	Calcula	ation	Check Cel	1	xplanatory	Inps	it .		G	🚥 - 🗍	- F	Aab+	
🥥 Clear	-	BI	U] •) (3	· <u>A</u> ·	E	H	E	Q	Merg	e - 😽	* %	• •.0	4.0 C	Conditional	Linke	d Cell	Note	(Output	Wa	Warning Text		Heading 1		2 1	leading 3	Hea	ding 4	•	Insert	Delete F	ormat 1	Themes /	Aa+
	¢ (00	- fx	4/12/2	013	10:01:41	AM																													
		В	C		1. I.	E	F	G		H		J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH
35130320		12/4/13	Lab Int	lo: A(403 C	edar L	JSA																														
mp	JobTy	peName	Works	tatio Jobini	lex S	iampleIndi Re	plicate	SampleID	Wan	weNumt	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265
2/13 10:01	Norma	al		1 1	6347	594474	1		1	1060	1.174367	1.169028	1.161095	1.152462	1.144269	1.136975	1.130587	1.124671	1.118177	1.109347	1.096055	1.076614	1.050721	1.020011	0.987768	0.957773	0.93279	0.913417	0.897826	0.882442	0.86322	0.836996	0.802468	0.760545	0.714041	0.666907
2/13 10:01	Norma	al		1 1	6347	594475	1		2	1060	1.236163	1.224816	1.213445	1.203333	1.194433	1.185992	1.177303	1.167946	1.157501	1.145115	1.129392	1.108876	1.082934	1.052488	1.020056	0.988904	0.961699	0.939316	0.920406	0.901861	0.879943	0.851592	0.815448	0.772286	0.724786	0.676795
2/13 10:01	Norma	al		1 1	6347	594476	1	L	3	1060	1.132829	1.131338	1.127171	1.121764	1.115967	1.110044	1.103983	1.097631	1.090495	1.081479	1.068946	1.051302	1.027905	0.999765	0.96952	0.94056	0.915653	0.895761	0.879587	0.864024	0.845259	0.82008	0.78693	0.746391	0.701017	0.654649
2/13 10:01	Norma	al		1 1	6347	594477	1		4	1060	1.209717	1.196581	1.182448	1.169595	1.159037	1.150633	1.143685	1.137299	1.130379	1.121474	1.108853	1.091021	1.0675	1.039418	1.009414	0.980754	0.956015	0.935984	0.919283	0.902859	0.883063	0.856893	0.82297	0.781958	0.736377	0.689938
2/13 10:02	Norma	al		1 1	6347	594478	:	L :	5	1060	1.167169	1.155416	1.144443	1.135664	1.129477	1.125215	1.121651	1.117421	1.111153	1.101409	1.086772	1.066282	1.040092	1.009915	0.978788	0.950084	0.926164	0.907339	0.891662	0.875581	0.855171	0.827444	0.791295	0.747822	0.699979	0.651769
2/13 10:02	Norma	al		1 1	6347	594479	1	L	6	1060	1.197093	1.178723	1.163159	1.150549	1.140653	1.133002	1.127066	1.122078	1.11669	1.108818	1.096017	1.076372	1.049533	1.017293	0.983248	0.951526	0.925137	0.904733	0.888346	0.872143	0.851806	0.823983	0.787326	0.742849	0.6936	0.643826
2/13 10:02	Norm	al		1 1	6347	594480	1	L	7	1060	1.24763	1.214322	1.191816	1.176712	1.166241	1.158485	1.152303	1.14673	1.140299	1.13081	1.115819	1.093662	1.064489	1.030662	0.996158	0.965111	0.940168	0.921439	0.906493	0.891282	0.87156	0.844219	0.808172	0.76457	0.716417	0.667757
2/13 10:02	Norm	al		1 1	6347	594481	1		8	1060	1.190054	1.186357	1.183249	1.180014	1.175545	1.169019	1.16036	1.150114	1.138788	1.126144	1.111002	1.091775	1.067501	1.038748	1.007782	0.977797	0.95153	0.930002	0.91198	0.894409	0.873539	0.84627	0.811199	0.769066	0.722523	0.675398
2/13 10:02	Norm	al		1 1	6347	594482	-		9	1060	1.230022	1.224966	1.214292	1.201249	1.188049	1.175656	1.164285	1.153811	1.143735	1.132917	1.119541	1.101634	1.078005	1.049107	1.01723	0.985743	0.957698	0.934465	0.915091	0.896632	0.875259	0.847636	0.812061	0.769016	0.721041	0.672059
2/13 10:02	Norma	al		1 1	6347	594483	1	1	D	1060	1.190874	1.182911	1.172735	1.161865	1.151669	1.143049	1.13631	1.130957	1.125494	1.117533	1.1044	1.084163	1.056653	1.023923	0.989759	0.958312	0.932446	0.912582	0.896537	0.880364	0.859762	0.831504	0.794417	0.749671	0.7004	0.650841
2/13 10:02	Norma	al		1 1	6347	594484		1	1	1060	1.167036	1.156633	1.145854	1.135802	1.126541	1.117732	1.109274	1.101368	1.094015	1.086384	1.076647	1.062562	1.042571	1.016809	0.98738	0.957631	0.930723	0.908221	0.889375	0.871403	0.850582	0.823649	0.788961	0.747047	0.700445	0.652973
2/13 10:02	Norm	al		1 1	6347	594485		1	2	1060	1.22582	1.22403	1.213125	1.198521	1.184055	1.171649	1.161668	1.153332	1.144992	1.134413	1.119296	1.098054	1.070594	1.038691	1.005597	0.974892	0.949074	0.928538	0.911407	0.894216	0.873114	0.845135	0.809115	0.766015	0.718635	0.670868
2/13 10:02	Norma	al		1 1	6347	594486		1	3	1060	1.169111	1.163761	1.154766	1.144583	1.134848	1.126315	1.119111	1.112885	1.106763	1.099315	1.088792	1.073732	1.053717	1.029855	1.004613	0.980962	0.961168	0.945832	0.933622	0.921763	0.907034	0.886855	0.860083	0.827304	0.790603	0.752961
2/13 10:02	Norma	al		1 1	6347	594487	-	1	4	1060	1.198159	1.18971	1.178066	1.166343	1.156427	1.148788	1.142807	1.137113	1.129805	1.118718	1.101895	1.078291	1.048451	1.014756	0.980894	0.950605	0.926216	0.907666	0.892477	0.876627	0.855913	0.827311	0.789875	0.744969	0.695814	0.646591
2/13 10:03	Norm	al		1 1	6347	594488	1	1	5	1060	1.173401	1.169982	1.164828	1.158106	1.150041	1.141139	1.132156	1.123661	1.115392	1.105891	1.092815	1.073926	1.048334	1.017289	0.984019	0.952532	0.925952	0.905181	0.888508	0.872262	0.85216	0.824778	0.788644	0.744651	0.695766	0.646214
1/13 10.03	Alexand	al.			6949	E04480	-		0	1060	1 169304	1 160648	1 140047	1 130466	1 133763	1 11 76 71	1 100308	1 103373	1.006474	1 000430	1 081 783	1.067013	1.04734	1 030331	0.080473	OOFBEEL	0.031078	0.008FR	0.800305	0.073867	0.013133	0.832000	0 701 227	0.740304	0 303503	OFFEDIR

1072 1045

1000

Calibration (Spectra -> Prediction) 0.20 (a) FT-MIR spectrum of milk 0.15 Between 850 – 1060 2854 1649 0.10 1548 1744 Absorbance absorbance values (abs) 0.05 0.00 different between brands and models -0.05 -0.10 → additional step necessary before 4000 3000 1500 Wave number cm calibration across data sets

- 🕷 E	xcel	File Edit	View	Insert	Format	Tools	Data	Wind	low																									
000														351	30320.	113.Spe	ectrumDa	ata.xlsx	(Read-O	nly)			_						-	-	-	-	-	-
2 1	🗊 E	i 📾 😹	B 😫	6	· @ ·	Σ - 2	5 · 7	- (x		100%	0																			Q.+	Search I	n Sheet		
A Ho	me	Layout	ables	Charts	SmartAr	t Fo	rmulas	Data		view																								A +
Ec	lit		F	ont				Alignment			N	lumber									Forma	t.									Cells		Themes	
P3 - 1	🕹 Fill	* Calibri (Body)	- 11 -	A- A-			abc +) 1	Text =	Date		•	.	Norm	al	Bad		Good	No	sutral	Calcu	ation	Check Cel		Explanatory	T Inp	ut			0	T - [Aab -	-
Paste	🥜 Clea	r* B /	U	-	* <u>A</u> *	E	포크	E		terge -	- %	9 ,00	3.0 Co Fo	nditional	Linke	d Cell	Note		Output	w	arning Text	Hea	ding 1	Heading	2	Heading 3	He	ading 4	•	Insert	Delete F	Format 1	Themes 1	Aa+
A3	8	:00	(= fx	4/12/201	3 10:01:4	1 AM																												_
1		B	C	D	E	F	G	H		1 1	K	L	M	N	0	Р	0	R	S	т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH
1	351303	20 12/4	/13 Lab Info:	Al 403 Cedar	USA	a. 300 m	1.0.000	- Sec. 200			2. 22.00		1 Const.	- 10 Sec. 1	10000	C. Straw	100		62.65		Control of Control			1.	- 11 Sec. 1	Street,		- 11 (S.) - 14	1000	1000		Contraction of the	1000	
2 TimeSt	qmp	JobTypeNam	Workstat	io JobIndex	SampleInde	Replicate	SampleID	WaveNu	mt	40 2	41 242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265
3 4/1	2/13 10:0	01 Normal		1 16347	594474	1		1 10	50 1.174	167 1.1690	28 1.161095	1.152462	1.144269	1.136975	1.130587	1.124671	1.118177	1.109347	1.096055	1.076614	1.050721	1.020011	0.987768	0.957773	0.93279	0.913417	0.897826	0.882442	0.86322	0.836996	0.802468	0.760545	0.714041	0.666907
4 4/1	2/13 10:1	01 Normal		1 16347	594475	1		2 10	50 1.236	63 1.2248	16 1.213445	1.203333	1.194433	1.185992	1.177303	1.167946	1.157501	1.145115	1.129392	1.108876	1.082934	1.052488	1.020056	0.988904	0.961699	0.939316	0.920406	0.901861	0.879943	0.851592	0.815448	0.772286	0.724786	0.676795
5 4/1	2/13 10:0	01 Normal		1 16347	594476	1		3 10	50 1.132	29 1.1313	38 1.127171	1.121764	1.115967	1.110044	1.103983	1.097631	1.090495	1.081479	1.068946	1.051302	1.027905	0.999765	0.96952	0.94056	0.915653	0.895761	0.879587	0.864024	0.845259	0.82008	0.78693	0.746391	0.701017	0.654649
6 4/1	2/13 10:	01 Normal		1 16347	594477	1		4 10	50 1.209	17 1.1965	81 1.182448	1.169595	1.159037	1.150633	1.143685	1.137299	1.130379	1.121474	1.108853	1.091021	1.0675	1.039418	1.009414	0.980754	0.956015	0.935984	0.919283	0.902859	0.883063	0.856893	0.82297	0.781958	0.736377	0.689938
7 4/3	2/13 10:	02 Normal		1 16347	594478	1		5 10	50 1.167	69 1.1554	16 1.144443	1.135664	1.129477	1.125215	1.121651	1.117421	1.111153	1.101409	1.086772	1.066282	1.040092	1.009915	0.978788	0.950084	0.926164	0.907339	0.891662	0.875581	0.855171	0.827444	0.791295	0.747822	0.699979	0.651765
5 4/1	2/13 10:1	02 Normal		1 16347	594479	1		6 10	50 1.197	93 1.1787	23 1.163159	1.150549	1.140653	1.133002	1.127066	1.122078	1.11669	1.108818	1.096017	1.076372	1.049533	1.017293	0.983248	0.951526	0.925137	0.904733	0.888346	0.872143	0.851806	0.823983	0.787326	0.742849	0.6936	0.64382
) 4/3	2/13 10:1	02 Normal		1 16347	594480	1		7 10	50 1.24	63 1.2143	22 1.191816	1.176712	1.166241	1.158485	1.152303	1.14673	1.140299	1.13081	1.115819	1.093662	1.064489	1.030662	0.996158	0.965111	0.940168	0.921439	0.906493	0.891282	0.87156	0.844219	0.808172	0.76457	0.716417	0.667757
0 4/1	2/13 10:	02 Normal		1 16347	594481	1		8 10	50 1.190	1.1863	57 1.183249	1.180014	1.175545	1.169019	1.16036	1.150114	1.138788	1.126144	1.111002	1.091775	1.067501	1.038748	1.007782	0.977797	0.95153	0.930002	0.91198	0.894409	0.873539	0.84627	0.811199	0.769066	0.722523	0.675398
1 4/1	2/13 10:1	02 Normal		1 16347	594482	1		9 10	50 1.230	22 1.2249	56 1.214292	1.201249	1.188049	1.175656	1.164285	1.153811	1.143735	1.132917	1.119541	1.101634	1.078005	1.049107	1.01723	0.985743	0.957698	0.934465	0.915091	0.896632	0.875259	0.847636	0.812061	0.769016	0.721041	0.672059
2 4/1	2/13 10:1	02 Normal		1 16347	594483	1	1	.0 10	50 1.190	74 1.1829	11 1.172735	1.161865	1.151669	1.143049	1.13631	1.130957	1.125494	1.117533	1.1044	1.084163	1.056653	1.023923	0.989759	0.958312	0.932446	0.912582	0.896537	0.880364	0.859762	0.831504	0.794417	0.749671	0.7004	0.650841
3 4/1	2/13 10:	02 Normal		1 16347	594484	1	1	1 10	50 1.167	36 1.1566	33 1.145854	1.135802	1.126541	1.117732	1.109274	1.101368	1.094015	1.086384	1.076647	1.062562	1.042571	1.016809	0.98738	0.957631	0.930723	0.908221	0.889375	0.871403	0.850582	0.823649	0.788961	0.747047	0.700445	0.652973
4 4/1	2/13 10:1	02 Normal		1 16347	594485	1	1	2 10	50 1.22	82 1.224	3 1.213125	1.198521	1.184055	1.171649	1.161668	1.153332	1.144992	1.134413	1.119296	1.098054	1.070594	1.038691	1.005597	0.974892	0.949074	0.928538	0.911407	0.894216	0.873114	0.845135	0.809115	0.766015	0.718635	0.670868
5 4/1	2/13 10:	02 Normal		1 16347	594486	1	1	3 10	50 1.169	11 1.1637	51 1.154766	1.144583	1.134848	1.126315	1.119111	1.112885	1.106763	1.099315	1.088792	1.073732	1.053717	1.029855	1.004613	0.980962	0.961168	0.945832	0.933622	0.921763	0.907034	0.886855	0.860083	0.827304	0.790603	0.752961
6 4/1	2/13 10:0	02 Normal		1 16347	594487	1	1	4 10	50 1.198	59 1.189	1 1.178066	1.166343	1.156427	1.148788	1.142807	1.137113	1.129805	1.118718	1.101895	1.078291	1.048451	1.014756	0.980894	0.950605	0.926216	0.907666	0.892477	0.876627	0.855913	0.827311	0.789875	0.744969	0.695814	0.646591
7 4/1	2/13 10:1	03 Normal		1 16347	594488	1	1	5 10	50 1.173	01 1.1699	82 1.164828	1.158106	1.150041	1.141139	1.132156	1.123661	1.115392	1.105891	1.092815	1.073926	1.048334	1.017289	0.984019	0.952532	0.925952	0.905181	0.888508	0.872262	0.85216	0.824778	0.788644	0.744651	0.695766	0.646214
18 4/1	2/13 10:	03 Normal		1 16347	594489	1	1	6 10	50 1.168	104 1.1606-	48 1.149947	1.138466	1.12752	1.117671	1.109208	1.102273	1.096474	1.090429	1.081782	1.067953	1.04734	1.020331	0.989472	0.958561	0.931058	0.90858	0.890205	0.872867	0.852573	0.825909	0.791237	0.749204	0.702502	0.655048

Calibration Needs....

- Largest possible (and expected) variability
 - In reference phenotypes
 - E.g., if values between 1 and 10 are expected, reference data from 1 to 10 are needed for calibration, potentially 1/10 of each

Calibration Needs....

- Largest possible (and expected) variability
 - In reference phenotypes
 - But also in spectral data
 - I.e., spectra used during calibration process should cover expected range of spectra used when predicting

Calibration Needs....

- Largest possible (and expected) variability
 - In reference phenotypes
 - But also in spectral data

Importance of international collaborations obvious

International Innovative Calibrations....

- Important "organizational" innovation
 - calibration as an "open" process (more common in near-infrared)
- **Open means** here:
 - New, international, partners join by simply adding relevant reference (and validation) data to the data pool
 - Access to prediction equations + updates when new partners arrive
- Other advantages:
 - All partners keep **full control** over their **own data** -
 - **Only equation developing entities** (here CRA-W and ULiège-GxABT) have access to all data and only for equation building 11

Standardization of MIR Spectra....

J. Dairy Sci. 98:2150–2160 http://dx.doi.org/10.3168/jds.2014-8764 © American Dairy Science Association[®], 2015.

Standardization of milk mid-infrared spectra from a European dairy network

C. Grelet,¹ J. A. Fernández Pierna,¹ P. Dardenne, V. Baeten, and F. Dehareng² Walloon Agricultural Research Center, Valorisation of Agricultural Products Department, 24 Chaussée de Namur, 5030 Gembloux, Belgium

J. Dairy Sci. 100:7910–7921 https://doi.org/10.3168/jds.2017-12720 © American Dairy Science Association[®], 2017.

Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models

C. Grelet,* J. A. Fernández Pierna,* P. Dardenne,* H. Soyeurt,† A. Vanlierde,* F. Colinet,† C. Bastin,‡ N. Gengler,† V. Baeten,* and F. Dehareng*¹ "Valorization of Adjricultural Products Department, Walloon Adjricultural Research Center, 5030 Gembloux, Belgium

*Valorization of Agricultural Products Department, Walloon Agricultural Research Center, 5030 Gembloux, Belgium †Agriculture, Bio-Engineering, and Chemistry Department, University of Liège, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium ‡Walloon Breeding Association, B-5590 Ciney, Belgium

NON_TD .

STD MASTER

Standardization of MIR Spectra....

0.015

0.01

0.005

-0.005 5

-0.01

PC 5 (0.01%

0.01 0.015 0.02 0.025 4 (0.01%)

eters

Vanlierde,* F. Colinet,† C. Bastin,1

5030 Gembloux, Belgium ux Aaro-Bio Tech, 5030 Gembloux, Belaium

Two Successful Examples of Consortia....

Fatty acids (FA)

J. Dairy Sci. 94:1657-1667 doi:10.3168/jds.2010-3408 © American Dairy Science Association[®], 2011.

Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries

H. Soyeurt,*^{+1,2} F. Dehareng,^{‡1} N. Gengler,*[†] S. McParland,[§] E. Wall,[‡] D. P. Berry,[§] M. Coffey,# and P. Dardennet

*Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium †National Funds for Scientific Research, 1000 Brussels, Belgium ‡Walloon Agricultural Research Centre, Valorisation of Agricultural Products, 5030 Gembloux, Belgium STeagasc Moorepark Dairy Production Research Centre, Fermoy, Co. Cork, Ireland #Sustainable Livestock Systems Group, Scottish Agricultural College, Bush Estate, Penicuik, Midlothian, EH26 0PH, United Kingdom

MIR based methane (CH_{4}) proxy

Animal, page 1 of 8 © The Animal Consortium 2012 doi:10.1017/51751731112000456

Potential use of milk mid-infrared spectra to predict methane emission of dairy cows

F. Dehareng^{1*+}, C. Delfosse^{1*}, E. Froidmont², H. Soyeurt^{3,4}, C. Martin⁵, N. A. Vanlierde¹ and P. Dardenne¹

¹Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre, B-5030 Gemblow, Belgium; ²Department Agricultural Research Centre, B-5030 Gembloux, Belgium: ³Animal Science Unit, Gembloux Agro Bio-Tech, University of Liège, B-503 Fund for Scientific Research, B-1000 Brussels, Belgium; 5UR1213 Herbivores, INRAClermont-Theix Research Centre, F-63122 Saint Ge

J. Dairy Sci. 98:5740-5747 http://dx.doi.org/10.3168/jds.2014-8436 © American Dairy Science Association®, 2015,

Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra

A. Vanlierde,*1 M.-L. Vanrobays,+1 F. Dehareng,* E. Froidmont,+ H. Soyeurt,+ S. McI M. H. Deighton,# F. Grandl, II M. Kreuzer, II B. Gredler, II P. Dardenne,* and N. Gengler *Walloon Agricultural Research Centre, Valorization of Agricultural Products Department, 5030 Gembloux, Belo *Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, 5030 #Walloon Agricultural Research Centre, Production and Sectors Department, 5030 Gembloux, Belgium STeagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland #Agriculture Research Division, Department of Economic Development, Jobs, Transport and Resources, Ellinba 3821 Victoria, Australia IETH Zürich, Institute of Agricultural Sciences, 8092 Zürich, Switzerland ¶Qualitas AG, 6300 Zug, Switzerland

J. Dairy Sci. 101:7618-7624 https://doi.org/10.3168/jds.2018-14472

© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers

A. Vanlierde,* H. Soyeurt,† N. Gengler,† F. G. Colinet,† E. Froidmont,‡ M. Kreuzer,§ F. Grandl,# M. Bell,II P. Lund, I D. W. Olijhoek, I M. Eugène,** C. Martin,** B. Kuhla,++1 and F. Dehareng* *Walloon Agricultural Research Centre, Valorization of Agricultural Products, 5030 Gembloux, Belgium †Gembloux Agro-Bio Tech, University of Liège, Agrobiochem Department and Research and Teaching Centre (TERRA), 5030 Gembloux, Belgium ±Walloon Agricultural Research Centre. Production and Sectors Department, 5030 Gembloux, Belgium SETH Zürich, Institute of Agricultural Sciences, 8092 Zürich, Switzerland #Qualitas AG, 6300 Zug, Switzerland IAgri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, United Kingdom IDepartment of Animal Science, AU Foulum, Aarhus University, 8830 Tiele, Denmark **UMR Herbivores, INRA, VetAgro Sup, Université Clermont Auvergne, 63122 Saint-Genés-Champanelle. France ttLeibniz Institute for Farm Animal Biology (FBN). Institute of Nutritional Physiology, 18196 Dummerstorf, Germany

Creating Opportunities in Dairy Cattle Breeding

- Milk fat composition
 - First reported in 2010
 - Some progress in 2012

- MIR based CH₄ proxy
 - First reported in 2016

ober 24-28, 2016, Puerto Var

However These Studies Also Showed Challenges....

- Definitions of novel traits, quality of data, e.g.:
 - CH₄ traits and proxies, different FA prediction equations
- Quantity and deepness of data, no international evaluations
- Modeling of these traits, e.g.:
 - FA \rightarrow massive multi-variate, multi-lactation, test-day models
 - CH₄ → needs to address very many different traits recorded on different time scales, on different related animals in different environments
- Genomics making things even more complex
- ► And often forgotten: "economics" in a very wide sense... → "a" values
 - Because the crucial question is "why" should we select for a novel trait!

Current Status of FA Genomic Evaluations

- Progress since 2012
 - FA equations now very stable
 - Progress in Walloon genomic evaluation methodology -
 - External predictor traits MACE for milk, fat%, prot% simple model
 - Use of correlated traits **←**
 - Extending cow reference population

http://dx.doi.org/10.3168/jds.2015-9894 © American Dairy Science Association®, 2015

Integration of external estimated breeding values and associated reliabilities using correlations among traits and effects

J. Vandenplas, *†^{1,2} F. G. Colinet,* G. Glorieux,‡ C. Bertozzi,‡ and N. Gengler* *Animal Science Unit, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgiun National Fund for Scientific Research, 1000 Brussels, Belgium ‡Research and Development Department, Walloon Breeding Association, 5590 Ciney, Belgium

- Still how to define "economics" for FA very uncertain -
- Further progress pending

but -> FA excellent biomarkers for cow health, management...

Genomic evaluation of MIR predicte CH₄ exploiting correlations to MACE evaluated traits

Current Status of CH₄ Genomic Evaluations

- Progress since 2016
 - CH_4 equation evolving \rightarrow SF₆, chambers, soon Greenfeed
 - > Expanding international collaboration for MIR equation
 - "Residual CH_4 " = "MIR CH_4 " "Expected CH_4 " ← MACE for M, F%, P%, ...
 - > Blend in Walloon genomic evaluation system
 - International collaboration in the context of genomic evaluation
 - > Sharing reference populations, data, SNP MACE ?
- Two important issues
 - Important to get clear message about r_g between CH₄ and its MIR proxy
 - > International collaboration needed
 - Generating index: correlations to other traits and "economics" for CH₄

Current Status of CH₄ Genomic Evaluations enomic evaluation of MIR predicted CH, exploiting correlations to MACE evaluated traits Sengler*, H. Soveurt, J. Vandenp Progress since 2016 CH_{4} equation evolving \rightarrow SF₆, chambers, soon Greenfeed

- Expanding international collaboration for MIR equation
- "Residu -
 - \rightarrow Ble
- Interna
 - Sh >

Two imp

- Import
- r M. F%. P%. ... After some failed efforts also in an international context... recently projects were approved... ...pending final financing approval
- International collaboration needed
- **Generating index**: correlations to other traits and "economics" for CH₄ -

its MIR proxy

bn

Conclusions

Wallonia first

- Getting access to MIR data and researching its use on large scale
- Opened very early opportunities
 - However we faced also challenges (and lack of funds)
 - International collaboration, still room to do more
- Early focus of FA and CH₄, good choices?
 - Economic values, availability of data???

Future focus

- Still $CH_4 \rightarrow$ collaborations + funding
- FA \rightarrow animal health, wellbeing, ... (with other MIR based biomarkers)
- Some still "hidden" work closer to the market as e.g., "cheese making"

Conclusions

Wallonia first

-

- Getting access to MIR data and researching its use on large scale
- Opened very early opportunities.

I think we can all agree today:

- There are countless opportunities
 in MIR based breeding
 - Still $CH_4 \rightarrow collaborations + funding$
 - FA → animal health, wellbeing, ... (with other MIR based biomarkers)
 - Some still "hidden" work closer to the market as e.g., "cheese making"

Acknowledgements

- Support throughout the Futurospectre partnership
 - AWE Comité du Lait CRA-W ULiège-GxABT
- CECI Consortium for computational resources
- Service Public de Wallonie (SPW DGO3, Belgium) agriculture
- National Fund for Scientific Research
- Support by different European Projects:

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.

C.E.C.I

