Cow Reference Population
- Benefit for Genomic Evaluation Systems
- and Farmers

Stefan Rensing, H. Alkhoder, C. Kubitz, S. Schierenbeck and D. Segelke
Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden/Germany
IB-Meeting 2017, Tallinn, August 25th-28th
Genotyping of German Holstein females

- 2.4 Mio. Holstein cows in milk recording
- 1.9 Mio. Holstein cows herdbook registered

Genotyped females (07-2015 / 06-2016):
 - ca. 1,000 / month
 - in ca. 10% of all herds
 - i.e. <2% of all new females
 - high pre-selected females for breeding program
 - almost no genotyping for management purpose (whole herd genotyping)

Reasons?
 - Technical reasons? no
 - Price genotyping? 49€ package price individual female
 - No promotion?
Why Female reference population?

- The established bull reference populations have limitations
 - Less new bulls/year
 - More and more biased by genomic (pre) selection
 - Hard to extend to new traits
- We need an alternative resp. enhancement
- Female reference population
Why Female reference population?

- The established bull reference populations have limitations
 - Less new bulls per year
 - More and more biased by genomic (pre) selection

- Number of new active DEU HOL bulls per year has decreased
Setting up a female reference population

Requirements by genomic evaluation system
- Not preselected females
- Representing entire genetics of population
- Performing in representative range of management conditions
- Good data quality incl. new traits
- needs cooperation of commercial dairy farmers

Requirements by commercial dairy farmers
- Increase of profit and/or management benefits
- Easy to handle
Joint project KuhVision

- Joint project by all partners in German Genomic Consortium (11 herdbook organizations, meanwhile plus LUX)

- Goals:
 - 120,000 unselected genotyped and phenotyped cows by mid 2019
 - Majority contributing data on health traits and hoof trimming data
 - In farms across whole country representing the entire Holstein population
 - After initial phase adding >35,000 additional cows per year
 - Initial spark for promoting herd genotyping as standard management tool
KuhVision: how does it work?

- Contract farmer ⇔ local breeding organization
 - Genotyping all new females for at least 3 years
 - Recording of health and routine hoof trimming data and herd classification
 - Reduced/subsidized fee for genotyping guaranteed

- Initial genotyping assisted by breeding organization
 - All cows in first lactation (max. 200 d. in milk) for free
 - All female young stock in farm

- Continuous genotyping new born females
 - Individual tissue eartag provided automatically after registration
 - Providing data (on new traits) via herd management system => DHI => vit
 - Individual access to results by internet portal or data files for herd management system
KuhVision: Where are we?

- **1st June 2016:** Start of project
- **February 2017:** 550 herds with >100,000 milking cows signed
 - Closure list for new participants
- **August 2017:** 650 herds with >130,000 milking cows
 - 180,000 animals genotyped
 - >75,000 cows in milk with genotypes

Reasons for success

- Subsidized price for genotyping + genomic evaluation (19.50 € / animal versus 49€)
- Intensive promoting by organizations
- Strong support to the farms:
 - With technical tools (e.g. eartag supply, recording software, …)
 - Assistance with initial genotyping entire herd (young stock + all cows in 1st lact.)
- Good feedback of results
Distribution of herds in KuhVision (DEU & LUX)

- (normal) distribution of gRZG (gTMI)
 - Scale relative breeding values $\sim 100/ s 12$
Benefit for the farmer

- Effective selection tool among female calves
 - and tool for precise mating of heifers and cows

- How to prove?

- Comparison of female gEBV with phenotypic performance within herd
 - gEBV: calculated without own performance (sire-pedigree-index + dGV)
 - Phenotypic performance: deviation from herd average

- First results
 - Including data from pilot research project KuhL (ca. 15,000 cows born 2012/2013)

- strong promotion tool to convince more commercial farmers
gEBV ↔ phenotype: Milk kg 1st lactation (305 d.)

- N = 26,877
- \bar{g}EBV = +232 kg milk
- \bar{m} Milk kg = 9,093 kg
gEBV ↔ phenotype: SCC (thousand) first 3 test days 1st lactation

![Graph showing gEBV RZS (SCS) and SCC 3TD (Tsd) deviation from herd.]

- n = 42,617
- \(\overline{\sigma} \) gEBV = 103
- \(\overline{\sigma} \) SCC = 153 Tsd
gEBV ↔ phenotype: Non-Return-Rate 56 in 1st lactation

\[\text{Deviation from herd } \phi \ (\text{Non-Return-Rate 56 days}) \]

\[\text{N}=33,692 \]

\[\circ \ gEBV = 102 \]

\[\circ \ NR56 = 58\% \]
gEBV \leftrightarrow phenotype: maternal Still Birth 1st calving (% dead calves)

N= 41,106
$\bar{\sigma}$ gEBV = 101
$\bar{\sigma}$ mSB = 13 %
gEBV ↔ phenotype: Udder score 1st lactation

-1.4
-0.2
0.4
1.2

N = 36,711
φ gEBV = 104
φ Udder = 81.4
Summary and Outlook

- Project KuhVision to set up an un-selected female reference population is very successful
 - >120,000 genotyped cows with phenotypes expected mid 2019
 - Inclusion in EG bull reference population adds reliability in all traits
 - see Alkhoder et al. this meeting

- Next steps
 - Integration of reference cows in routine Genomics for standard traits (2018)
 - Routine Genomics for direct health traits based on female reference population (2019)

- The future?
 - Sharing of information from cow reference population with other countries?
 - e.g. via or SNP-MACE?
 - see Liu et al. this meeting