GEBV with GMACE correlations in the Czech Republic Přibyl J.¹, Zavadilová L.¹, **Pešek P.¹**, Šplíchal J.², Bauer J.¹, Vostrý L.¹, Motyčka J.³, Fulínová D.², Čermák V.², Růžička Z.², ¹Institute of animal science, Czech Republic ² Czech Moravian Breeding Corporation, Czech Republic ³ Holstein Cattle Breeders Association of the Czech Republic, Czech Republic ## 2011-2014 – several genomic approaches compared - RRBLUP - GBLUP - Blending ssGBLUP - ssGBLUP - ssGBULP with combination of domestic production + Interbull DRPs # Correlation of GEBV (EBV) prediction 2008 to daughters results (DYD) 2012 for 140 young buls - 969,269 1st lactations 1991–2008, 1,762,905 in pedigree - 1,185,225 1st lactations 1991–2012, in pedigree 1,958,139 - 98 037 INTERBULL EBVs through year 2008 - 1,605 genotyped bulls (1259 already proven in 2008) # Correlation of GEBV (EBV) prediction 2008 to daughters results (DYD) 2012 for 140 young buls | Method | Correlation | Validated reliability | |----------------------|-------------|-----------------------| | D - BLUP | 0.47 | 0.29 | | D - ssGBLUP | 0.61 | 0.48 | | I - RRBLUP | 0.61 | 0.48 | | I – GBLUP | 0.61 | 0.47 | | I – blending BLUP | 0.53 | 0.36 | | I – blending ssGBLUP | 0.65 | 0.54 | | D + I – BLUP | 0.51 | 0.34 | | D + I – ssGBLUP | 0.64 | 0.53 | ### Correlations of GEBVs (EBVs)predicted using different approaches to GMACE - 1,257,462 1st lactations 1991-2013, 2,314,856 animals in pedigree - 19,435,367 test-day records of 1,086,267 cows (calved 1995-2013), 2,142,354 animals in pedigree - 112,880 INTERBULL EBVs - 2,627 genotyped bulls (2,189 already proven) ## Correlations of GEBVs (EBVs) predicted using different approaches to GMACE # Our choice: Single step GBLUP #### **Benefits:** - more accurate yet much simpler than multi-step methods - avoiding bias in GEBV prediction - increase of breeding value prediction reliability for ungenotyped animals ## Correlations for production traits (RRTDM) 158 young bulls not proven in the Czech Republic ## Correlations of GEBV to MACE for production traits (RRTDM) 73 bulls proven abroad but not in the Czech Republic ### Correlations with GMACE for linear type traits — Body traits 43 young bulls not proven in the Czech Republic ## Correlations with GMACE for linear type traits – Feet & Legs 43 young bulls not proven in the Czech Republic ## Correlations with GMACE for linear type traits - Udder 43 young bulls not proven in the Czech Republic # Correlations with GMACE for linear type traits – overall characteristics 43 young bulls not proven in the Czech Republic #### Conclusion **Single-step Genomic Evaluation** as the best approach for the Czech Republic - The stronger correlation with GMACE compared to multi-step approaches - Medium to high correlations witch GMACE for production traits as well as linear type traits ### Thank You for Your attention #### **Additional notes** ### Weighted analysis ERC = $$\delta$$ (rel/(1-rel) $$\delta = ((1-h^2)/h^2)$$ ### Weighted analysis #### Ridge Regression $$DRP_{j} = \mu + \Sigma \delta_{i} \cdot g_{ij} + e_{j}$$ #### **Fixed effects** μ – common constant #### **Random effects** **g**_{ii} – genotype of j-th bull in i-th locus δ_i – regression coefficient **e**_j – residual Heritability $(h^2) = 0.25$; Weight = ERC ### Weighted analysis #### **GBLUP** $$DRP_j = \mu + an_j + e_j$$ **Fixed effects** μ – common constant **Random effects** **an_j** – animal **e**_j – residual Heritability $(h^2) = 0.25$; Weight = ERC #### BLUP / ssGBLUP, lactation model $$milk_{ijkl} = HYS_i + \beta_1 \cdot ca_k + \beta_2 \cdot ca_k^2 + \beta_3 \cdot do_l + \beta_4 \cdot do_l^2$$ $$+ an_j + e_{ijkl}$$ #### **Fixed effects** **HYS** – contemporary group **β** – regression coefficients ca_k; ca_k² – curvilinear regression on calving age do_I; do_I² – curvilinear regression on days open #### Random effects **an**i – animal **e**_{ijkl} – residual Heritability $(h^2) = 0.25$; #### ssGBLUP, RR-TDM, 3 lactations $$y_{ijn} = HTD_{in} + f_{fg,n} + f_{pe,n} + f_{an,n} + e_{ijn}$$, - yijn = test-day record of milk yield of cow in lactation n<1,2,3>; - HTDin = herd-test-day contemporary group *i* within a herd in lactation *n* (fixed effect); - $f_{\rm fg,n}$ = average LP of lactation curve according to groups of cows within management classes of systematic environment (Zavadilová et al., 2005b) (fixed effect); - $f_{pe,n}$ = permanent environmental within lactation LP of lactation curve of cows, random effect with covariance matrix (Zavadilová et al., 2005a); - $f_{an,n}$ = genetic within lactation LP of lactation curve of animal, random effect with covariance matrix; - e_{ijn} = random residual of test day records within lactation n, reflecting changes of variability along the course of lactation. #### Relationship ``` Ridge Regression...I BLUP – AMA GBLUP.......G (VanRaden 2008) ssGBLUP.......H (Legarra et al., 2009) ``` $$G$$ – normalised (aver. diag. = 1) (Forni et al., 2011) shifted (aver. G = aver. A_{22}) (Vitezica et al., 2011) ### **SNP** editing: - •MAF, - •G-score, - No. of loci per bull, - No. of bulls per locus, - Big error of prediction of old bulls in training set, - •Big discrepancy of relationship A₂₂ x G, - Proportion of H.