Qualitas.

Single-step in a multi-breed population with crossbred animals

Adrien M Butty, Peter von Rohr, Patrick Stratz, Urs Schuler, Madeleine Berweger, Urs Schnyder, and Mirjam Spengeler

May 30th, 2022

Interbull Meeting, Montréal

Objective

Compare **traditional and genomic** breeding values estimation with inclusion of phenotypes and/or genotypes of **one or multiple breeds**.

Udder support

- Simple trait
- Score from 1 to 9
- Homogeneous
 data recording over time
- Almost normally distributed
- Trait shared through
 Interbull network

Number of observations

Qualitas

3

Using ssGTBLUP as implemented in MiX99

- No inversion of the complete G matrix is needed and matrix size increase linearly with the number of genotyped animals (Stranden et al, 2018)
- Reliabilities were estimated in four step following Ben Zaabza et al. (EAAP 2020)

Model

- Animal repeatability model including
 - Fixed effects: classifier-year, year-season, age at calving, lactation stage, heterosis, recombination loss, and description scheme
 - Random effects: herd, permanent environment, animal, residual
- Genetic groups modelled into A_{22}^{-1} and G^{-1} with QP transformation
 - Genetic groups divided by breed

$$\mathbf{H}_{AB}^{-1} = \mathbf{A}_{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} & -\mathbf{B}\mathbf{Q}_{2} \\ \mathbf{0} & -\mathbf{Q}_{2}'\mathbf{B} & \mathbf{Q}_{2}'\mathbf{B}\mathbf{Q}_{2} \end{bmatrix}$$

⁽Matilainen et al., 2018)

Three breeds

Swiss Fleckvieh (SF)

➔ crossbreds

Simmental (SI)

A multi-breed evaluation with crossbred animals

Qualitas.

A multi-breed evaluation with crossbred animals

Numbers

# Records	Holstein	Swiss Fleckvieh	Simmental
Phenotypes	850'951 (79%)	195'637 (18%)	34'025 (3%)
Genotypes	343'233 (94%)	8'656 (2%)	12'565 (4%)
Both	22'164 (84%)	2'647 (10%)	1'601 (6%)

- Genotypes imputed together (one reference population) to 125K SNP
- Pedigree build for all phenotyped and/or genotyped animals and pruned to 2 generations

30.05.2022

Qualitas

Multi-breed vs single-bree

30.05.2022

Qualitas

- Change from PBLUP to ssGTBLUP evaluation reduces bias and improve dispersion
- Lower bias and better dispersion are reached with the complete multi-breed dataset
- Multi-breed ssGTBLUP evaluation seems to be the best option so far

BUT

Results of multi-breed ssGTBLUP for HO validation animals are not always the best

- HO dataset comprised the most non-selected candidates:
 - → Test the effect of **removing genotypes of unselected candidates**

- HO validation bulls are the furthest from the proven bulls:
 - Test the effect of increasing/decreasing the proportion of residual polygenic variance

Acknowledgements

Arbeitsgemeinschaft Schweizerischer Rinderzüchter Communauté de travail des éleveurs bovins suisses

Thank you for your attention

adrien.butty@qualitasag.ch

Credit: Mirjam Spengeler

